I\'m preparing to deploy a Rails app on Heroku that requires full text search. Up to now I\'ve been running it on a VPS using MySQL with Sphinx.
However, if I want to us
Since I just went through the effort of comparing elastic search (1.9) against postgres FTS, I figured I should share my results since they're somewhat more current than the ones @gustavodiazjaimes cites.
My main concern with postgres was that it did not have faceting built in, but that's trivial to build yourself, here's my example (in django):
results = YourModel.objects.filter(vector_search=query)
facets = (results
.values('book')
.annotate(total=Count('book'))
.order_by('book'))
I'm using postgres 9.6 and elastic-search 1.9 (through haystack on django). Here's a comparison between elasticsearch and postgres across 16 various types of queries.
es_times pg_times es_times_faceted pg_times_faceted
0 0.065972 0.000543 0.015538 0.037876
1 0.000292 0.000233 0.005865 0.007130
2 0.000257 0.000229 0.005203 0.002168
3 0.000247 0.000161 0.003052 0.001299
4 0.000276 0.000150 0.002647 0.001167
5 0.000245 0.000151 0.005098 0.001512
6 0.000251 0.000155 0.005317 0.002550
7 0.000331 0.000163 0.005635 0.002202
8 0.000268 0.000168 0.006469 0.002408
9 0.000290 0.000236 0.006167 0.002398
10 0.000364 0.000224 0.005755 0.001846
11 0.000264 0.000182 0.005153 0.001667
12 0.000287 0.000153 0.010218 0.001769
13 0.000264 0.000231 0.005309 0.001586
14 0.000257 0.000195 0.004813 0.001562
15 0.000248 0.000174 0.032146 0.002246
count mean std min 25% 50% 75% max
es_times 16.0 0.004382 0.016424 0.000245 0.000255 0.000266 0.000291 0.065972
pg_times 16.0 0.000209 0.000095 0.000150 0.000160 0.000178 0.000229 0.000543
es_times_faceted 16.0 0.007774 0.007150 0.002647 0.005139 0.005476 0.006242 0.032146
pg_times_faceted 16.0 0.004462 0.009015 0.001167 0.001580 0.002007 0.002400 0.037876
In order to get postgres to these speeds for faceted searches I had to use an GIN index on the field with a SearchVectorField, which is django specific but I'm sure other frameworks have a similar vector type.
One other consideration is that pg 9.6 now supports phrase matching, which is huge.
My take away is that postgres is for most cases going to be preferrable as it offers: