I am to design a server that needs to serve millions of clients that are simultaneously connected with the server via TCP.
The data traffic between the server a
EDIT: As noted in the comments below, my original assertion that there is a 64K limit based on the number of ports is incorrect, however there is a 32K limit on the number of socket handles, so my suggested design is valid.
With a typical TCP/IP server design, you're limited in the number of simultaneous open connections you can have. The server has one listening port, and when a client connects to it the server makes an accept call, and that creates a new socket on a random port for the rest of the connection.
To handle more than 64K simultaneous connections I think you need to use UDP instead. You only need one port for the server to listen on, and you need to manage the connections using a 32-bit client ID in the packet data instead of having a separate port for each client. The 32-bit client ID could be the client's IP address, and the client can listen on a known UDP port for messages coming back from the server. That port would be the only one that needs to be open on the firewall.
With this approach, your only limitation is how quickly you can handle and respond to UDP messages. With millions of clients, even sparse traffic could give you large spikes, and if you don't read the packets fast enough your input queue will fill up and you'll start dropping packets. The C10K page Greg points to will give you strategies for that.