Obtain eigen values and vectors from sklearn PCA

前端 未结 3 497
别跟我提以往
别跟我提以往 2021-01-29 23:56

How I can get the the eigen values and eigen vectors of the PCA application?

from sklearn.decomposition import PCA
clf=PCA(0.98,whiten=True)      #converse 98%          


        
3条回答
  •  一向
    一向 (楼主)
    2021-01-30 01:01

    I used the sklearn PCA function. The return parameters 'components_' is eigen vectors and 'explained_variance_' is eigen values. Below is my test code.

    from sklearn.decomposition import PCA
    import numpy as np
    
    
    def main():
        data = np.array([[2.5, 2.4], [0.5, 0.7], [2.2, 2.9], [1.9, 2.2], [3.1, 3.0], [2.3, 2.7], [2, 1.6], [1, 1.1], [1.5, 1.6], [1.1, 0.9]])
        print(data)
        pca = PCA()
        pca.fit(data)
    
        print(pca.components_)
        print(pca.explained_variance_)
    
    
    
    if __name__ == "__main__":
        main()
    

提交回复
热议问题