Since both std::priority_queue
and std::set
(and std::multiset
) are data containers that store elements and allow you to access them in an
set/multiset are generally backed by a binary tree. http://en.wikipedia.org/wiki/Binary_tree
priority_queue is generally backed by a heap. http://en.wikipedia.org/wiki/Heap_(data_structure)
So the question is really when should you use a binary tree instead of a heap?
Both structures are laid out in a tree, however the rules about the relationship between anscestors are different.
We will call the positions P for parent, L for left child, and R for right child.
In a binary tree L < P < R.
In a heap P < L and P < R
So binary trees sort "sideways" and heaps sort "upwards".
So if we look at this as a triangle than in the binary tree L,P,R are completely sorted, whereas in the heap the relationship between L and R is unknown (only their relationship to P).
This has the following effects:
If you have an unsorted array and want to turn it into a binary tree it takes O(nlogn)
time. If you want to turn it into a heap it only takes O(n)
time, (as it just compares to find the extreme element)
Heaps are more efficient if you only need the extreme element (lowest or highest by some comparison function). Heaps only do the comparisons (lazily) necessary to determine the extreme element.
Binary trees perform the comparisons necessary to order the entire collection, and keep the entire collection sorted all-the-time.
Heaps have constant-time lookup (peek) of lowest element, binary trees have logarithmic time lookup of lowest element.