I have a pkl file from MNIST dataset, which consists of handwritten digit images.
I\'d like to take a look at each of those digit images, so I need to unpack the pkl fil
In case you want to work with the original MNIST files, here is how you can deserialize them.
If you haven't downloaded the files yet, do that first by running the following in the terminal:
wget http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
wget http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz
wget http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
wget http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
Then save the following as deserialize.py
and run it.
import numpy as np
import gzip
IMG_DIM = 28
def decode_image_file(fname):
result = []
n_bytes_per_img = IMG_DIM*IMG_DIM
with gzip.open(fname, 'rb') as f:
bytes_ = f.read()
data = bytes_[16:]
if len(data) % n_bytes_per_img != 0:
raise Exception('Something wrong with the file')
result = np.frombuffer(data, dtype=np.uint8).reshape(
len(bytes_)//n_bytes_per_img, n_bytes_per_img)
return result
def decode_label_file(fname):
result = []
with gzip.open(fname, 'rb') as f:
bytes_ = f.read()
data = bytes_[8:]
result = np.frombuffer(data, dtype=np.uint8)
return result
train_images = decode_image_file('train-images-idx3-ubyte.gz')
train_labels = decode_label_file('train-labels-idx1-ubyte.gz')
test_images = decode_image_file('t10k-images-idx3-ubyte.gz')
test_labels = decode_label_file('t10k-labels-idx1-ubyte.gz')
The script doesn't normalize the pixel values like in the pickled file. To do that, all you have to do is
train_images = train_images/255
test_images = test_images/255