Sample datasets in Pandas

前端 未结 4 1243
醉酒成梦
醉酒成梦 2021-01-29 23:43

When using R it\'s handy to load \"practice\" datasets using

data(iris)

or

data(mtcars)

Is there something s

4条回答
  •  不思量自难忘°
    2021-01-30 00:04

    Since I originally wrote this answer, I have updated it with the many ways that are now available for accessing sample data sets in Python. Personally, I tend to stick with whatever package I am already using (usually seaborn or pandas). If you need offline access, installing the data set with Quilt seems to be the only option.

    Seaborn

    The brilliant plotting package seaborn has several built-in sample data sets.

    import seaborn as sns
    
    iris = sns.load_dataset('iris')
    iris.head()
    
       sepal_length  sepal_width  petal_length  petal_width species
    0           5.1          3.5           1.4          0.2  setosa
    1           4.9          3.0           1.4          0.2  setosa
    2           4.7          3.2           1.3          0.2  setosa
    3           4.6          3.1           1.5          0.2  setosa
    4           5.0          3.6           1.4          0.2  setosa
    

    Pandas

    If you do not want to import seaborn, but still want to access its sample data sets, you can use @andrewwowens's approach for the seaborn sample data:

    iris = pd.read_csv('https://raw.githubusercontent.com/mwaskom/seaborn-data/master/iris.csv')
    

    Note that the sample data sets containing categorical columns have their column type modified by sns.load_dataset() and the result might not be the same by getting it from the url directly. The iris and tips sample data sets are also available in the pandas github repo here.

    R sample datasets

    Since any dataset can be read via pd.read_csv(), it is possible to access all R's sample data sets by copying the URLs from this R data set repository.

    Additional ways of loading the R sample data sets include statsmodel

    import statsmodels.api as sm
    
    iris = sm.datasets.get_rdataset('iris').data
    

    and PyDataset

    from pydataset import data
    
    iris = data('iris')
    

    scikit-learn

    scikit-learn returns sample data as numpy arrays rather than a pandas data frame.

    from sklearn.datasets import load_iris
    
    iris = load_iris()
    # `iris.data` holds the numerical values
    # `iris.feature_names` holds the numerical column names
    # `iris.target` holds the categorical (species) values (as ints)
    # `iris.target_names` holds the unique categorical names
    

    Quilt

    Quilt is a dataset manager created to facilitate dataset management. It includes many common sample datasets, such as several from the uciml sample repository. The quick start page shows how to install and import the iris data set:

    # In your terminal
    $ pip install quilt
    $ quilt install uciml/iris
    

    After installing a dataset, it is accessible locally, so this is the best option if you want to work with the data offline.

    import quilt.data.uciml.iris as ir
    
    iris = ir.tables.iris()
    
       sepal_length  sepal_width  petal_length  petal_width        class
    0           5.1          3.5           1.4          0.2  Iris-setosa
    1           4.9          3.0           1.4          0.2  Iris-setosa
    2           4.7          3.2           1.3          0.2  Iris-setosa
    3           4.6          3.1           1.5          0.2  Iris-setosa
    4           5.0          3.6           1.4          0.2  Iris-setosa
    

    Quilt also support dataset versioning and include a short description of each dataset.

提交回复
热议问题