I\'m working on an open source project dealing with adding metadata to folders. The provided (Python) API lets you browse and access metadata like it was just another folder. Be
As someone who developed a scientific project that went from using folders of files to HDF5, I think I can shed some light on the advantages of HDF5.
When I began my project, I was operating on small test datasets, and producing small amounts of output, in the range of kilobytes. I began with the easiest data format, tables encoded as ASCII. For each object I processed, I produced on ASCII table.
I began applying my code to groups of objects, which meant writing multiple ASCII tables at the end of each run, along with an additional ASCII table containing output related to the entire group. For each group, I now had a folder that looked like:
+ group
| |-- object 1
| |-- object 2
| |-- ...
| |-- object N
| |-- summary
At this point, I began running into my first difficulties. ASCII files are very slow to read and write, and they don't pack numeric information very efficiently, because each digit takes a full Byte to encode, rather than ~3.3 bits. So I switched over to writing each object as a custom binary file, which sped up I/O and decreased file size.
As I scaled up to processing large numbers (tens of thousands to millions) of groups, I suddenly found myself dealing with an extremely large number of files and folders. Having too many small files can be a problem for many filesystems (many filesystems are limited in the number of files they can store, regardless of how much disk space there is). I also began to find that when I would try to do post-processing on my entire dataset, the disk I/O to read many small files was starting to take up an appreciable amount of time. I tried to solve these problems by consolidating my files, so that I only produced two files for each group:
+ group 1
| |-- objects
| |-- summary
+ group 2
| |-- objects
| |-- summary
...
I also wanted to compress my data, so I began creating .tar.gz files for collections of groups.
At this point, my whole data scheme was getting very cumbersome, and there was a risk that if I wanted to hand my data to someone else, it would take a lot of effort to explain to them how to use it. The binary files that contained the objects, for example, had their own internal structure that existed only in a README file in a repository and on a pad of paper in my office. Whoever wanted to read one of my combined object binary files would have to know the byte offset, type and endianness of each metadata entry in the header, and the byte offset of every object in the file. If they didn't, the file would be gibberish to them.
The way I was grouping and compressing data also posed problems. Let's say I wanted to find one object. I would have to locate the .tar.gz file it was in, unzip the entire contents of the archive to a temporary folder, navigate to the group I was interested in, and retrieve the object with my own custom API to read my binary files. After I was done, I would delete the temporarily unzipped files. It was not an elegant solution.
At this point, I decided to switch to a standard format. HDF5 was attractive for a number of reasons. Firstly, I could keep the overall organization of my data into groups, object datasets and summary datasets. Secondly, I could ditch my custom binary file I/O API, and just use a multidimensional array dataset to store all the objects in a group. I could even create arrays of more complicated datatypes, like arrays of C
structs, without having to meticulously document the byte offsets of every entry. Next, HDF5 has chunked compression which can be completely transparent to the end user of the data. Because the compression is chunked, if I think users are going to want to look at individual objects, I can have each object compressed in a separate chunk, so that only the part of the dataset the user is interested in needs to be decompressed. Chunked compression is an extremely powerful feature.
Finally, I can just give a single file to someone now, without having to explain much about how it's internally organized. The end user can read the file in Python, C, Fortran, or h5ls
on the commandline or the GUI HDFView, and see what's inside. That wasn't possible with my custom binary format, not to mention my .tar.gz collections.
Sure, it's possible to replicate everything you can do with HDF5 with folders, ASCII and custom binary files. That's what I originally did, but it became a major headache, and in the end, HDF5 did everything I was kluging together in an efficient and portable way.