what is the benefit of using Gradient Descent in the linear regression space? looks like the we can solve the problem (finding theta0-n that minimum the cost func) with analytic
I saw a very good answer from https://stats.stackexchange.com/questions/23128/solving-for-regression-parameters-in-closed-form-vs-gradient-descent
Basically, the reasons are:
1.For most nonlinear regression problems there is no closed form solution.
2.Even in linear regression (one of the few cases where a closed form solution is available), it may be impractical to use the formula. The following example shows one way in which this can happen.