It's extremely difficult. The environment both you and Stefano Borini describe is very accurate. I think there are three key factors which propagate the situation.
- Short-term thinking
- Lack of formal training and experience
- Continuous turnover of grad students/postdocs to shoulder the brunt of new development
Short-term thinking. There are a few reasons that short-term thinking is the norm, most of them already well explained by Stefano. As well as the awful pressure to publish and the lack of recognition for software creation, I would emphasise the number of short-term contracts. There is simply very little advantage for more junior academics (PhD students and postdocs) to spend any time planning long-term software strategies, since contracts are 2-3 years. In the case of longer-term projects e.g. those based around the simulation code of a permanent member of staff, I have seen some applications of basic software engineering, things like simple version control, standard test cases, etc. However even in these cases, project management is extremely primitive.
Lack of formal training and experience. This is a serious handicap. In astronomy and astrophysics, programming is an essential tool, but understanding of the costs of development, particularly maintenance overheads, is extremely poor. Because scientists are normally smart people, there is a feeling that software engineering practices don't really apply to them, and that they can 'just make it work'. With more experience, most programmers realise that writing code that mostly works isn't the hard part; maintaining and extending it efficiently and safely is. Some scientific code is throwaway, and in these cases the quick and dirty approach is adequate. But all too often, the code will be used and reused for years to come, bringing consequent grief to all involved with it.
Continuous turnover of grad students/postdocs for new development. I think this is the key feature that allows the academic approach to software to continue to survive. If the code is horrendous and takes days to understand and debug, who pays that price? In general, it's not the original author (who has probably moved on). Nor is it the permanent member of staff, who is often only peripherally involved with new development. It is normally the graduate student who is implementing new algorithms, producing novel approaches, trying to extend the code in some way. Sometimes it will be a postdoc, hired specifically to work on adding some feature to an existing code, and contractually obliged to work on this area for some fraction of their time.
This model is hugely inefficient. I know a PhD student in astrophysics who spent over a year trying to implement a relatively basic piece of mathematics, only a few hundred lines of code, in an existing n-body code. Why did it take so long? Because she literally spent weeks trying to understand the existing, horribly written code, and how to add her calculation to it, and months more ineffectively debugging her problems due to the monolithic code structure, coupled with her own lack of experience. Note that there was almost no science involved in this process; just wasting time grappling with code. Who ultimately paid that price? Only her. She was the one who had to put more hours in to try and get enough results to make a PhD. Her supervisor will get another grad student after she's gone - and so the cycle continues.
The point I'm trying to make is that the problem with the software creation process in academia is endemic within the system itself, a function of the resources available and the type of work that is rewarded. The culture is deeply embedded throughout academia. I don't see any easy way of changing that culture through external resources or training. It's the system itself that needs to change, to reward people for writing substantial code, to place increased scrutiny on the correctness of results produced using scientific code, to recognise the importance of training and process in code, and to hold supervisors jointly responsible for wasting the time of the members of their research group.