Why were 181783497276652981
and 8682522807148012
chosen in Random.java
?
Here\'s the relevant source code from Java SE JDK 1.7:
If you consider that the equation used for the random number generator is:
Where X(n+1) is the next number, a is the multipler, X(n) is the current number, c is the increment and m is the modulus.
If you look further into Random
, a, c and m are defined in the header of the class
private static final long multiplier = 0x5DEECE66DL; //= 25214903917 -- 'a'
private static final long addend = 0xBL; //= 11 -- 'c'
private static final long mask = (1L << 48) - 1; //= 2 ^ 48 - 1 -- 'm'
and looking at the method protected int next(int bits)
this is were the equation is implemented
nextseed = (oldseed * multiplier + addend) & mask;
//X(n+1) = (X(n) * a + c ) mod m
This implies that the method seedUniquifier()
is actually getting X(n) or in the first case at initialisation X(0) which is actually 8682522807148012 * 181783497276652981
, this value is then modified further by the value of System.nanoTime()
. This algorithm is consistent with the equation above but with the following X(0) = 8682522807148012
, a = 181783497276652981
, m = 2 ^ 64 and c = 0. But as the mod m of is preformed by the long overflow the above equation just becomes
Looking at the paper, the value of a = 1181783497276652981
is for m = 2 ^ 64, c = 0. So it appears to just be a typo and the value 8682522807148012
for X(0) which appears to be a seeming randomly chosen number from legacy code for Random
. As seen here. But the merit of these chosen numbers could still be valid but as mentioned by Thomas B. probably not as "good" as the one in the paper.
EDIT - Below original thoughts have since been clarified so can be disregarded but leaving it for reference
This leads me the conclusions:
The reference to the paper is not for the value itself but for the methods used to obtain the values due to the different values of a, c and m
It is mere coincidence that the value is otherwise the same other than the leading 1 and the comment is misplaced (still struggling to believe this though)
OR
There has been a serious misunderstanding of the tables in the paper and the developers have just chosen a value at random as by the time it is multiplied out what was the point in using the table value in the first place especially as you can just provide your own seed value any way in which case these values are not even taken into account
So to answer your question
Could other numbers have been chosen that would have worked as well as these two numbers? Why or why not?
Yes, any number could have been used, in fact if you specify a seed value when you Instantiate Random you are using any other value. This value does not have any effect on the performance of the generator, this is determined by the values of a,c and m which are hard coded within the class.