How does Google find relevant content when it\'s parsing the web?
Let\'s say, for instance, Google uses the PHP native DOM Library to parse content. What methods would t
Actually answering your question (and not just generally about search engines):
I believe going bit like Instapaper does would be the best option.
Logic behind instapaper (I didn't create it so I certainly don't know inner-workings, but it's pretty easy to predict how it works):
Find biggest bunch of text in text-like elements (relying on paragraph tags, while very elegant, won't work with those crappy sites that use div's instead of p's). Basically, you need to find good balance between block elements (divs, ps, etc.) and amount of text. Come up with some threshold: if X number of words stays undivided by markup, that text belongs to main body text. Then expand to siblings keeping the text / markup threshold of some sort.
Once you do the most difficult part — find what text belongs to actual article — it becomes pretty easy. You can find first image around that text and use it as you thumbnail. This way you will avoid ads, because they will not be that close to body text markup-wise.
Finally, coming up with keywords is the fun part. You can do tons of things: order words by frequency, remove noise (ands, ors and so on) and you have something nice. Mix that with "prominent short text element above detected body text area" (i.e. your article's heading), page title, meta and you have something pretty tasty.
All these ideas, if implemented properly, will be very bullet-proof, because they do not rely on semantic markup — by making your code complex you ensure even very sloppy-coded websites will be detected properly.
Of course, it comes with downside of poor performance, but I guess it shouldn't be that poor.
Tip: for large-scale websites, to which people link very often, you can set HTML element that contains the body text (that I was describing on point #1) manually. This will ensure correctness and speed things up.
Hope this helps a bit.