Thanks a lot for all the beautiful answers! Cannot mark just one as correct
Note: Already a wiki
I am new to functional programming and while
I think concat
is a bad example to try to understand. It's a core function and it's more low-level than code you would normally write yourself, because it strives to be efficient.
Another thing to keep in mind is that Clojure code is extremely dense compared to Java code. A little Clojure code does a lot of work. The same code in Java would not be 23 lines. It would likely be multiple classes and interfaces, a great many methods, lots of local temporary throw-away variables and awkward looping constructs and generally all kinds of boilerplate.
Some general tips though...
Try to ignore the parens most of the time. Use the indentation instead (as Nathan Sanders suggests). e.g.
(if s
(if (chunked-seq? s)
(chunk-cons (chunk-first s) (concat (chunk-rest s) y))
(cons (first s) (concat (rest s) y)))
y))))
When I look at that my brain sees:
if foo
then if bar
then baz
else quux
else blarf
If you put your cursor on a paren and your text editor doesn't syntax-highlight the matching one, I suggest you find a new editor.
Sometimes it helps to read code inside-out. Clojure code tends to be deeply nested.
(let [xs (range 10)]
(reverse (map #(/ % 17) (filter (complement even?) xs))))
Bad: "So we start with numbers from 1 to 10. Then we're reversing the order of the mapping of the filtering of the complement of the wait I forgot what I'm talking about."
Good: "OK, so we're taking some xs
. (complement even?)
means the opposite of even, so "odd". So we're filtering some collection so only the odd numbers are left. Then we're dividing them all by 17. Then we're reversing the order of them. And the xs
in question are 1 to 10, gotcha."
Sometimes it helps to do this explicitly. Take the intermediate results, throw them in a let
and give them a name so you understand. The REPL is made for playing around like this. Execute the intermediate results and see what each step gives you.
(let [xs (range 10)
odd? (complement even?)
odd-xs (filter odd? xs)
odd-xs-over-17 (map #(/ % 17) odd-xs)
reversed-xs (reverse odd-xs-over-17)]
reversed-xs)
Soon you will be able to do this sort of thing mentally without effort.
Make liberal use of (doc)
. The usefulness of having documentation available right at the REPL can't be overstated. If you use clojure.contrib.repl-utils
and have your .clj files on the classpath, you can do (source some-function)
and see all the source code for it. You can do (show some-java-class)
and see a description of all the methods in it. And so on.
Being able to read something quickly only comes with experience. Lisp is no harder to read than any other language. It just so happens that most languages look like C, and most programmers spend most of their time reading that, so it seems like C syntax is easier to read. Practice practice practice.