Heavy single query vs. gazillion light query load is another point to consider, in addition to other answers here. It's inherently harder to automatically optimize a single query in a NoSql-style DB. I've used MongoDB and ran into performance issues when trying to calculate a complex query. I haven't used Cassandra but I expect it to have the same issue.
On the other hand, if your load is expected to be that of very many small queries, and you want to be able to easily scale out, you could take advantage of eventual consistency that is offered by most NoSql DBs. Note that eventual consistency is not really a feature of a non-relational data model, but it is much easier to implement and to set up in a NoSql-based system.
For a single, very heavy query, any modern RDBMS engine can do a decent job parallelizing parts of the query and take advantage of as much CPU and memory you throw at it (on a single machine). NoSql databases don't have enough information about the structure of the data to be able to make assumptions that will allow truly intelligent parallelization of a big query. They do allow you to easily scale out more servers (or cores) but once the query hits a complexity level you are basically forced to split it apart manually to parts that the NoSql engine knows how to deal with intelligently.
In my experience with MongoDB, in the end because of the complexity of the query there wasn't much Mongo could do to optimize it and run parts of it on multiple data. Mongo parallelizes multiple queries but isn't so good at optimizing a single one.