I will focus here on some of the important aspects which can help you to decide if you really need Cassandra. The list is not exhaustive, just some of the points which I have at top of my mind-
Don't consider Cassandra as the first choice when you have a strict requirement on the relationship (across your dataset).
Cassandra by default is AP system (of CAP). But, it supports tunable consistency which means it can be configured to support as CP as well. So don't ignore it just because you read somewhere that it's AP and you are looking for CP systems. Cassandra is more accurately termed “tuneably consistent,” which means it allows you to easily decide the level of consistency you require, in balance with the level of availability.
Don't use Cassandra if your scale is not much or if you can deal with a non-distributed DB.
Think harder if your team thinks that all your problems will be solved if you use distributed DBs like Cassandra. To start with these DBs is very simple as it comes with many defaults but optimizing and mastering it for solving a specific problem would require a good (if not a lot) amount of engineering effort.
Cassandra is column-oriented but at the same time each row also has a unique key. So, it might be helpful to think of it as an indexed, row-oriented store. You can even use it as a document store.
Cassandra doesn't force you to define the fields beforehand. So, if you are in a startup mode or your features are evolving (as in agile) - Cassandra embraces it. So better, first think about queries and then think about data to answer them.
Cassandra is optimized for really high throughput on writes. If your use case is read-heavy (like cache) then Cassandra might not be an ideal choice.