There is a trade off the C designers have made. That's to say, they made the decision to put speed above safety. C won't
- Check array index bounds
- Check for uninitialized variable values
- Check for memory leaks
- Check for null pointer dereference
When you index into an array, in Java it takes some method call in the virtual machine, bound checking and other sanity checks. That is valid and absolutely fine, because it adds safety where it's due. But in C, even pretty trivial things are not put in safety. For example, C doesn't require memcpy to check whether the regions to copy overlap. It's not designed as a language to program a big business application.
But these design decisions are not bugs in the C language. They are by design, as it allows compilers and library writers to get every bit of performance out of the computer. Here is the spirit of C how the C Rationale document explains it:
C code can be non-portable. Although it strove to give programmers the opportunity to write truly portable programs, the Committee did not want to force programmers into writing portably, to preclude the use of C as a ``high-level assembler'': the ability to write machine-specific code is one of the strengths of C.
Keep the spirit of C. The Committee kept as a major goal to preserve the traditional spirit of C. There are many facets of the spirit of C, but the essence is a community sentiment of the underlying principles upon which the C language is based. Some of the facets of the spirit of C can be summarized in phrases like
- Trust the programmer.
- Don't prevent the programmer from doing what needs to be done.
- Keep the language small and simple.
- Provide only one way to do an operation.
- Make it fast, even if it is not guaranteed to be portable.
The last proverb needs a little explanation. The potential for efficient code generation is one of the most important strengths of C. To help ensure that no code explosion occurs for what appears to be a very simple operation, many operations are defined to be how the target machine's hardware does it rather than by a general abstract rule. An example of this willingness to live with what the machine does can be seen in the rules that govern the widening of char objects for use in expressions: whether the values of char objects widen to signed or unsigned quantities typically depends on which byte operation is more efficient on the target machine.