I have a problem with solve my exercise. I read about dynamic programming and algorithms and I think my exercise is \"specific knapsack problem\". I solved it with brute force m
There are a few good tutorials on the internet that explain the Knapsack problem thoroughly.
More specifically, I would recommend this specific one, where the problem and the DP-approach is entirely explained, including the solution in three different languages (including Java).
// A Dynamic Programming based solution for 0-1 Knapsack problem
class Knapsack
{
// A utility function that returns maximum of two integers
static int max(int a, int b) { return (a > b)? a : b; }
// Returns the maximum value that can be put in a knapsack of capacity W
static int knapSack(int W, int wt[], int val[], int n)
{
int i, w;
int K[][] = new int[n+1][W+1];
// Build table K[][] in bottom up manner
for (i = 0; i <= n; i++)
{
for (w = 0; w <= W; w++)
{
if (i==0 || w==0)
K[i][w] = 0;
else if (wt[i-1] <= w)
K[i][w] = max(val[i-1] + K[i-1][w-wt[i-1]], K[i-1][w]);
else
K[i][w] = K[i-1][w];
}
}
return K[n][W];
}
// Driver program to test above function
public static void main(String args[])
{
int val[] = new int[]{60, 100, 120};
int wt[] = new int[]{10, 20, 30};
int W = 50;
int n = val.length;
System.out.println(knapSack(W, wt, val, n));
}
}
/*This code is contributed by Rajat Mishra */
Source: GeeksForGeeks