I am using 63 registers/thread ,so (32768 is maximum) i can use about 520 threads.I am using now 512 threads in this example.
(The parallelism is in the function \"comp
When i use numPointsRp>2000 it show me "out of memory"
Now we have some real code to work with, let's compile it and see what happens. Using RowRsSize=2000
and RowRpSize=200
and compiling with the CUDA 4.2 toolchain, I get:
nvcc -arch=sm_21 -Xcompiler="-D RowRsSize=2000 -D RowRpSize=200" -Xptxas="-v" -c -I./ kivekset.cu
ptxas info : Compiling entry function '_Z15computeEHfieldsPfiS_iPN6pycuda7complexIfEES3_S2_S2_PA3_S2_S5_S3_' for 'sm_21'
ptxas info : Function properties for _Z15computeEHfieldsPfiS_iPN6pycuda7complexIfEES3_S2_S2_PA3_S2_S5_S3_
122432 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 57 registers, 84 bytes cmem[0], 168 bytes cmem[2], 76 bytes cmem[16]
The key numbers are 57 registers and 122432 bytes stack frame per thread. The occupancy calculator suggests that a block of 512 threads will have a maximum of 1 block per SM, and your GPU has 7 SM. This gives a total of 122432 * 512 * 7 = 438796288 bytes of stack frame (local memory) to run your kernel, before you have allocated a single of byte of memory for input and output using pyCUDA. On a GPU with 1Gb of memory, it isn't hard to imagine running out of memory. Your kernel has a enormous local memory footprint. Start thinking about ways to reduce it.
As I indicated in comments, it is absolutely unclear why every thread needs a complete copy of the input data in this kernel code. It results in a gigantic local memory footprint and there seems to be absolutely no reason why the code should be written in this way. You could, I suspect, modify the kernel to something like this:
typedef pycuda::complex cmplx;
typedef float fp3[3];
typedef cmplx cp3[3];
__global__
void computeEHfields2(
float *Rs_mat_, int numPointsRs,
float *Rp_mat_, int numPointsRp,
cmplx *J_,
cmplx *M_,
cmplx kp,
cmplx eta,
cmplx E[][3],
cmplx H[][3],
cmplx *All )
{
fp3 * Rs_mat = (fp3 *)Rs_mat_;
cp3 * J = (cp3 *)J_;
cp3 * M = (cp3 *)M_;
int k=threadIdx.x+blockIdx.x*blockDim.x;
while (k
and the main __device__ function it calls to something like this:
__device__ void computeEvec2(
fp3 Rs_mat[], int numPointsRs,
cp3 J[],
cp3 M[],
fp3 Rp,
cmplx kp,
cmplx eta,
cmplx *Evec,
cmplx *Hvec,
cmplx *All)
{
....
}
and eliminate every byte of thread local memory without changing the functionality of the computational code at all.