I am reading a lot of tutorials that state two things.
model = Sequential()
model.add(Conv2D(32, (3,3), activation='relu', input_shape=input_shape))
model.add(BatchNormalization())
model.add(Conv2D(64, (3,3), activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(128, (3,3), activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(256, (3,3), activation='relu')
model.add(BatchNormalization())
model.add(Conv2D(256, (3,3), activation='relu')
model.add(MaxPooling2D())
model.add(BatchNormalization())
model.add(Flatten())
model.add(Dense(512, activation='sigmoid')) #This is the fully connected layer, whose dimensions are independent of the previous layers