This is not a \"vlookup-and-fill-down\" question.
My source data is excellent at delivering all the data I need, just not in in a usable form. Recent changes in volume
Assuming you want to replace NA
s in onPO
with values from Backordered
here is a solution using dplyr::left_join
:
library(dplyr);
left_join(inv, svc) %>%
mutate(onPO = ifelse(is.na(onPO), Backordered, onPO)) %>%
select(-Backordered, -`Rcv'd`);
# Item onHand demand onPO
#1 10100200 600 3300 2700
#2 10100201 NA NA 20
#3 10100202 39 40 1
#4 10100203 0 40 40
#5 10100204 NA NA 100
#6 10100205-A NA NA 18
#7 10100206 40 70 30
#8 10100207 0 126 126
#9 10100208 0 10 10
#10 10100209 0 10 10
#11 10100210 0 250 250
Or a solution in base R using merge
:
inv$onPO <- with(merge(inv, svc, all.x = TRUE), ifelse(is.na(onPO), Backordered, onPO))
Or using coalesce
instead of ifelse
(thanks to @thelatemail):
library(dplyr);
left_join(inv, svc) %>%
mutate(onPO = coalesce(onPO, Backordered)) %>%
select(-Backordered, -`Rcv'd`);