Points:
A -2.08576 1.76533 -0.46417
B -0.95929 0.87554 0.03365
C 0.28069 1.66193 0.42640
D 0.62407 2.22927
Based on your refined shell code elsewhere in this thread, I've transcribed that into an awk
solution as well. As people seem to have found the _docd
version of use, I will include that at the end. I'm also including a debug version (in the middle of the reply).
cat torsion2.awk
-
#!/bin/awk -f
BEGIN {
# dbg=0 # turns off dbg output
# see below for debug version of this script
}
function acos(x) { return atan2((1.-x^2)^0.5,x) }
NR==1 {x1=$2; y1=$3; z1=$4}
NR==2 {x2=$2; y2=$3; z2=$4}
NR==3 {x3=$2; y3=$3; z3=$4}
NR==4 {
x4=$2; y4=$3; z4=$4
# all of this code below is only executed when you read in the 4th line
# because then you have all the data
#
v1x=x2-x1 ; v1y=y2-y1 ; v1z=z2-z1 #plane1
v2x=x3-x2 ; v2y=y3-y2 ; v2z=z3-z2 #plane1
v3x=x2-x3 ; v3y=y2-y3 ; v3z=z2-z3 #plane2
v4x=x3-x4 ; v4y=y3-y4 ; v4z=z3-z4 #plane2
plane1_x=(v1y*v2z)-(v1z*v2y) # normal vector 1
plane1_y=(v2x*v1z)-(v2z*v1x) # normal vector 1
plane1_z=(v1x*v2y)-(v1y*v2x) # normal vector 1
plane2_x=(v3y*v4z)-(v3z*v4y) # normal vector 2
plane2_y=(v4x*v3z)-(v4z*v3x) # normal vector 2
plane2_z=(v3x*v4y)-(v3y*v4x) # normal vector 2
v1mag=sqrt(((plane1_x)**2)+((plane1_y)**2)+((plane1_z)**2)) # magnitude normal vector 1
v2mag=sqrt(((plane2_x)**2)+((plane2_y)**2)+((plane2_z)**2)) # magnitude normal vector 2
vn1x=(plane1_x)/(v1mag) ; vn1y=(plane1_y)/(v1mag) ; vn1z=(plane1_z)/(v1mag) # normalization normal vector 1
vn2x=(plane2_x)/(v2mag) ; vn2y=(plane2_y)/(v2mag) ; vn2z=(plane2_z)/(v2mag) # normalization normal vector 2
print acos((vn1x*vn2x)+(vn1y*vn2y)+(vn1z*vn2z))*180/3.141592653589793
}
Once the file is saved, you must mark the script as executable:
chmod +x ./torsion2.awk
Then you can run it with the sample data supplied:
./torsion2.awk data.txt
The output is
58.6892
Here is the full debug version. I needed it because I had editing errors like changing y2=$3
to just y=$3
! (These things happen ;-/ )
cat torsion2_debug.awk
#!/bin/awk -f
BEGIN {
dbg=1 # turns on dbg output
# dbg=0 # turns off dbg output
}
function acos(x) { return atan2((1.-x^2)^0.5,x) }
NR==1 {x1=$2; y1=$3; z1=$4}
NR==2 {x2=$2; y2=$3; z2=$4}
NR==3 {x3=$2; y3=$3; z3=$4}
NR==4 {
x4=$2; y4=$3; z4=$4
if (dbg) {
print "x1="x1 "\ty1="y1 "\tz1=" z1
print "x2="x2 "\ty2="y2 "\tz2=" z2
print "x3="x3 "\ty3="y3 "\tz3=" z3
print "x4="x4 "\ty4="y4 "\tz4=" z4
}
# all of this code below is only executed when you read in the 4th line
# because then you have all the data
#
v1x=x2-x1 ; v1y=y2-y1 ; v1z=z2-z1 #plane1
v2x=x3-x2 ; v2y=y3-y2 ; v2z=z3-z2 #plane1
v3x=x2-x3 ; v3y=y2-y3 ; v3z=z2-z3 #plane2
v4x=x3-x4 ; v4y=y3-y4 ; v4z=z3-z4 #plane2
if (dbg) {
print "#dbg: v1x="v1x "\tv1y=" v1y "\tv1z="v1z
print "#dbg: v2x="v2x "\tv2y=" v2y "\tv2z="v2z
print "#dbg: v3x="v3x "\tv3y=" v3y "\tv3z="v3z
print "#dbg: v4x="v4x "\tv4y=" v4y "\tv4z="v4z
}
plane1_x=(v1y*v2z)-(v1z*v2y) # normal vector 1
plane1_y=(v2x*v1z)-(v2z*v1x) # normal vector 1
plane1_z=(v1x*v2y)-(v1y*v2x) # normal vector 1
plane2_x=(v3y*v4z)-(v3z*v4y) # normal vector 2
plane2_y=(v4x*v3z)-(v4z*v3x) # normal vector 2
plane2_z=(v3x*v4y)-(v3y*v4x) # normal vector 2
if (dbg) {
print "#dbg: plane1_x=" plane1_x "\tplane1_y=" plane1_y "\tplane1_z=" plane1_z
print "#dbg: plane2_x=" plane2_x "\tplane2_y=" plane2_y "\tplane2_z=" plane2_z
}
v1mag=sqrt(((plane1_x)**2)+((plane1_y)**2)+((plane1_z)**2)) # magnitude normal vector 1
v2mag=sqrt(((plane2_x)**2)+((plane2_y)**2)+((plane2_z)**2)) # magnitude normal vector 2
if (dbg) {
print "#dbg: v1mag=" v1mag "\tv2mag="v2mag
}
vn1x=(plane1_x)/(v1mag) ; vn1y=(plane1_y)/(v1mag) ; vn1z=(plane1_z)/(v1mag) # normalization normal vector 1
vn2x=(plane2_x)/(v2mag) ; vn2y=(plane2_y)/(v2mag) ; vn2z=(plane2_z)/(v2mag) # normalization normal vector 2
if (dbg) {
print "#dbg: " (vn1x*vn2x) " " (vn1y*vn2y) " " ((vn1z*vn2z)*180/3.141592653589793)
}
print acos((vn1x*vn2x)+(vn1y*vn2y)+(vn1z*vn2z))*180/3.141592653589793
}
And here is the transcribed shell to awk version
I highly recommend the Grymoire's Awk Tutorial to help you understand the awk
programming paradigm and its built in variables like NR
(Number (of) Record).
cat torsion2_docd.awk
#!/bin/awk -f
function acos(x) { return atan2((1.-x^2)^0.5,x) }
# x1=`awk '{print $2}' LINEA` # x1
# y1=`awk '{print $3}' LINEA` # y1
# z1=`awk '{print $4}' LINEA` # z1
# x2=`awk '{print $2}' LINEB` # x2
# y2=`awk '{print $3}' LINEB` # y2
# z2=`awk '{print $4}' LINEB` # z2
# x3=`awk '{print $2}' LINEC` # x3
# y3=`awk '{print $3}' LINEC` # y3
# z3=`awk '{print $4}' LINEC` # z3
# x4=`awk '{print $2}' LINED` # x4
# y4=`awk '{print $3}' LINED` # y4
# z4=`awk '{print $4}' LINED` # z4
NR==1 {x1=$2; y1=$3; z1=$4}
NR==2 {x2=$2; y2=$3; z2=$4}
NR==3 {x3=$2; y3=$3; z3=$4}
NR==4 {
x4=$2; y=$3; z4=$4
# all of this code below is only executed when you read in the 4th line
# because then you have all the data
#
# v1x=`calc "($x2)-($x1)" | sed 's/^\t//g'` #plane1
# v1y=`calc "($y2)-($y1)" | sed 's/^\t//g'` #plane1
# v1z=`calc "($z2)-($z1)" | sed 's/^\t//g'` #plane1
# v2x=`calc "($x3)-($x2)" | sed 's/^\t//g'` #plane1
# v2y=`calc "($y3)-($y2)" | sed 's/^\t//g'` #plane1
# v2z=`calc "($z3)-($z2)" | sed 's/^\t//g'` #plane1
# v3x=`calc "($x2)-($x3)" | sed 's/^\t//g'` #plane2
# v3y=`calc "($y2)-($y3)" | sed 's/^\t//g'` #plane2
# v3z=`calc "($z2)-($z3)" | sed 's/^\t//g'` #plane2
# v4x=`calc "($x3)-($x4)" | sed 's/^\t//g'` #plane2
# v4y=`calc "($y3)-($y4)" | sed 's/^\t//g'` #plane2
# v4z=`calc "($z3)-($z4)" | sed 's/^\t//g'` #plane2
v1x=x2-x1 ; v1y=y2-y1 ; v1z=z2-z1 #plane1
v2x=x3-x2 ; v2y=y3-y2 ; v2z=z3-z2 #plane1
v3x=x2-x3 ; v3y=y2-y3 ; v3z=z2-z3 #plane2
v1x=x2-x1 ; v1y=y2-y1 ; v1z=z2-z1 #plane1
v2x=x3-x2 ; v2y=y3-y2 ; v2z=z3-z2 #plane1
v3x=x2-x3 ; v3y=y2-y3 ; v3z=z2-z3 #plane2
v4x=x3-x4 ; v4y=y3-y4 ; v4z=z3-z4 #plane2
# plane1_x=`calc "($v1y)*($v2z)-($v1z)*($v2y)" | sed 's/^\t//g'` # normal vector 1
# plane1_y=`calc "($v2x)*($v1z)-($v2z)*($v1x)" | sed 's/^\t//g'` # normal vector 1
# plane1_z=`calc "($v1x)*($v2y)-($v1y)*($v2x)" | sed 's/^\t//g'` # normal vector 1
# plane2_x=`calc "($v3y)*($v4z)-($v3z)*($v4y)" | sed 's/^\t//g'` # normal vector 2
# plane2_y=`calc "($v4x)*($v3z)-($v4z)*($v3x)" | sed 's/^\t//g'` # normal vector 2
# plane2_z=`calc "($v3x)*($v4y)-($v3y)*($v4x)" | sed 's/^\t//g'` # normal vector 2
plane1_x=(v1y*v2z)-(v1z*v2y) # normal vector 1
plane1_y=(v2x*v1z)-(v2z*v1x) # normal vector 1
plane1_z=(v1x*v2y)-(v1y*v2x) # normal vector 1
plane2_x=(v3y*v4z)-(v3z*v4y) # normal vector 2
plane2_y=(v4x*v3z)-(v4z*v3x) # normal vector 2
plane2_z=(v3x*v4y)-(v3y*v4x) # normal vector 2
# v1mag=`calc "sqrt(($plane1_x)**2+($plane1_y)**2+($plane1_z)**2)" | sed 's/^\t//g'` # magnitude normal vector 1
# v2mag=`calc "sqrt(($plane2_x)**2+($plane2_y)**2+($plane2_z)**2)" | sed 's/^\t//g'` # magnitude normal vector 2
v1mag=sqrt((plane1_x)**2+(plane1_y)**2+(plane1_z)**2) # magnitude normal vector 1
v2mag=sqrt((plane2_x)**2+(plane2_y)**2+(plane2_z)**2) # magnitude normal vector 2
# vn1x=`calc "($plane1_x)/($v1mag)" | sed 's/^\t//g'` # normalization normal vector 1
# vn1y=`calc "($plane1_y)/($v1mag)" | sed 's/^\t//g'` # normalization normal vector 1
# vn1z=`calc "($plane1_z)/($v1mag)" | sed 's/^\t//g'` # normalization normal vector 1
# vn2x=`calc "($plane2_x)/($v2mag)" | sed 's/^\t//g'` # normalization normal vector 2
# vn2y=`calc "($plane2_y)/($v2mag)" | sed 's/^\t//g'` # normalization normal vector 2
# vn2z=`calc "($plane2_z)/($v2mag)" | sed 's/^\t//g'` # normalization normal vector 2
vn1x=(plane1_x)/(v1mag) ; vn1y=(plane1_y)/(v1mag) ; vn1z=(plane1_z)/(v1mag) # normalization normal vector 1
vn2x=(plane2_x)/(v2mag) ; vn2y=(plane2_y)/(v2mag) ; vn2z=(plane2_z)/(v2mag) # normalization normal vector 2
# calc "acos(($vn1x)*($vn2x)+($vn1y)*($vn2y)+($vn1z)*($vn2z))*180/3.141592653589793" | sed 's/^\t//g' | sed 's/^~//g'
print acos((vn1x*vn2x)+(vn1y*vn2y)+(vn1z*vn2z))*180/3.141592653589793
}