Transform cell values as column headers and fill it with 1 if matching in python

前端 未结 2 859
余生分开走
余生分开走 2021-01-26 22:32

I have a dataframe:

df
ID 0   1   2    3  4 .... 
1  10  20  5    1  2 ....
2  3   4   NaN    10 1 ....

And I need to transpose the cell values

2条回答
  •  梦毁少年i
    2021-01-26 22:42

    Use DataFrame.set_index with DataFrame.stack for remove missing values, then create indicators by get_dummies and return 1/0 by max by first level, last convert columns to integers:

    df1 = (pd.get_dummies(df.set_index('ID').stack())
             .max(level=0)
             .rename(columns=int)
             .reset_index())
    print (df1)
       ID  1  2  3  4  5  10  20
    0   1  1  1  0  0  1   1   1
    1   2  1  0  1  1  0   1   0
    

    EDIT:

    print (df)
       ID   0   1    2   3  4  5
    0   1  10  20  5.0   1  2  5
    1   2   3   4  NaN  10  1  2
    

    If use max then always in output are 0/1 values (check 5 column):

    df1 = (pd.get_dummies(df.set_index('ID').stack())
             .max(level=0)
             .rename(columns=int)
             .reset_index())
    print (df1)
       ID  1  2  3  4  5  10  20
    0   1  1  1  0  0  1   1   1
    1   2  1  1  1  1  0   1   0
    

    But if use sum it count values (check 5 column):

    df2 = (pd.get_dummies(df.set_index('ID').stack())
             .sum(level=0)
             .rename(columns=int)
             .reset_index())
    print (df2)
       ID  1  2  3  4  5  10  20
    0   1  1  1  0  0  2   1   1
    1   2  1  1  1  1  0   1   0
    

提交回复
热议问题