Create a ggplot2 survival curve with censored table

后端 未结 2 791
轮回少年
轮回少年 2021-01-26 15:44

I am trying to create a Kaplan-Meier plot with 95% confidence bands plus having the censored data in a table beneath it. I can create the plot, but not the table. I get the erro

2条回答
  •  不知归路
    2021-01-26 16:36

    I solved the problem by using the Rcmdrplugin KMggplot2 The code is generated by the plugin after selecting the data and variables.

     library(survival, pos=18)
     data(lung, package="survival")
     lung <- within(lung, {
     sex <- factor(sex, labels=c('male','female'))
     })
     ggthemes_data <- ggthemes::ggthemes_data
     require("ggplot2")
     .df <- na.omit(data.frame(x = lung$time, y = lung$status, z = lung$sex))
     .df <- .df[do.call(order, .df[, c("z", "x"), drop = FALSE]), , drop = FALSE]
     .fit <- survival::survfit(survival::Surv(time = x, event = y, type = "right")      ~ z, 
       .df)
     .pval <- plyr::ddply(.df, plyr::.(),
      function(x) {
      data.frame(
      x = 0, y = 0, df = 1,
      chisq = survival::survdiff(
      survival::Surv(time = x, event = y, type = "right") ~ z, x
      )$chisq
     )})
     .pval$label <- paste0(
     "paste(italic(p), \" = ",
      signif(1 - pchisq(.pval$chisq, .pval$df), 3),
      "\")"
     )
     .fit <- data.frame(x = .fit$time, y = .fit$surv, nrisk = .fit$n.risk, nevent      = 
     .fit$n.event, ncensor= .fit$n.censor, upper = .fit$upper, lower = .fit$lower)
     .df <- .df[!duplicated(.df[,c("x", "z")]), ]
     .df <- .fit <- data.frame(.fit, .df[, c("z"), drop = FALSE])
     .med <- plyr::ddply(.fit, plyr::.(z), function(x) {
     data.frame(
     median = min(subset(x, y < (0.5 + .Machine$double.eps^0.5))$x)
     )})
     .df <- .fit <- rbind(unique(data.frame(x = 0, y = 1, nrisk = NA, nevent = NA, 
     ncensor = NA, upper = 1, lower = 1, .df[, c("z"), drop = FALSE])), .fit)
    .cens <- subset(.fit, ncensor == 1)
    .tmp1 <- data.frame(as.table(by(.df, .df[, c("z"), drop = FALSE], function(d) 
      max(d$nrisk, na.rm = TRUE))))
     .tmp1$x <- 0
     .nrisk <- .tmp1
     for (i in 1:9) {.df <- subset(.fit, x < 100 * i); .tmp2 <- 
     data.frame(as.table(by(.df, .df[, c("z"), drop = FALSE], function(d) if 
     (all(is.na(d$nrisk))) NA else min(d$nrisk - d$nevent - d$ncensor, na.rm =      TRUE)))); 
     .tmp2$x <- 100 * i; .tmp2$Freq[is.na(.tmp2$Freq)] <-     .tmp1$Freq[is.na(.tmp2$Freq)]; 
     .tmp1 <- .tmp2; .nrisk <- rbind(.nrisk, .tmp2)}
     .nrisk$y <- rep(seq(0.075, 0.025, -0.05), 10)
     .plot <- ggplot(data = .fit, aes(x = x, y = y, colour = z)) + 
      RcmdrPlugin.KMggplot2::geom_stepribbon(data = .fit, aes(x = x, ymin = lower,      ymax = 
      upper, fill = z), alpha = 0.25, colour = "transparent", show.legend = FALSE,     kmplot 
      = TRUE) + geom_step(size = 1.5) + 
    geom_linerange(data = .cens, aes(x = x,     ymin = y, 
      ymax = y + 0.02), size = 1.5) + 
    geom_text(data = .pval, aes(y = y, x = x,     label = 
      label), colour = "black", hjust = 0, vjust = -0.5, parse = TRUE, show.legend = 
      FALSE, size = 14 * 0.282, family = "sans") + 
      geom_vline(data = .med,      aes(xintercept 
     = median), colour = "black", lty = 2) + scale_x_continuous(breaks = seq(0,     900, by 
      = 100), limits = c(0, 900)) + 
     scale_y_continuous(limits = c(0, 1), expand =   c(0.01,0)) +      scale_colour_brewer(palette = "Set1") + scale_fill_brewer(palette =      "Set1") + 
        xlab("Time from entry") + ylab("Proportion of survival") + labs(colour =     "sex") + 
      ggthemes::theme_calc(base_size = 14, base_family = "sans") +             theme(legend.position 
      = c(1, 1), legend.justification = c(1, 1))
     .nrisk$y <- ((.nrisk$y - 0.025) / (max(.nrisk$y) - 0.025) + 0.5) * 0.5
     .plot2 <- ggplot(data = .nrisk, aes(x = x, y = y, label = Freq, colour = z)) + 
      geom_text(size = 14 * 0.282, family = "sans") + scale_x_continuous(breaks = seq(0,900, by = 100), limits = c(0, 900)) + 
      scale_y_continuous(limits = c(0, 1)) + 
      scale_colour_brewer(palette = "Set1") + ylab("Proportion of survival") + 
      RcmdrPlugin.KMggplot2::theme_natrisk(ggthemes::theme_calc, 14, "sans")
     .plot3 <- ggplot(data = subset(.nrisk, x == 0), aes(x = x, y = y, label = z, colour = z)) + 
      geom_text(hjust = 0, size = 14 * 0.282, family = "sans") + 
      scale_x_continuous(limits = c(-5, 5)) + scale_y_continuous(limits = c(0, 1)) + 
      scale_colour_brewer(palette = "Set1") + 
      RcmdrPlugin.KMggplot2::theme_natrisk21(ggthemes::theme_calc, 14, "sans")
     .plotb <- ggplot(.df, aes(x = x, y = y)) + geom_blank() + 
      RcmdrPlugin.KMggplot2::theme_natriskbg(ggthemes::theme_calc, 14, "sans")
      grid::grid.newpage(); grid::pushViewport(grid::viewport(layout = 
      grid::grid.layout(2, 2, heights = unit(c(1, 3), c("null", "lines")), widths  = 
      unit(c(4, 1), c("lines", "null"))))); 
      print(.plotb, vp = 
      grid::viewport(layout.pos.row = 1:2, layout.pos.col = 1:2)); 
      print(.plot , vp = 
      grid::viewport(layout.pos.row = 1  , layout.pos.col = 1:2)); 
      print(.plot2, vp = 
      grid::viewport(layout.pos.row = 2  , layout.pos.col = 1:2));
      print(.plot3, vp = 
      grid::viewport(layout.pos.row = 2  , layout.pos.col = 1  )); 
     .plot <-     recordPlot()
      print(.plot)
    

提交回复
热议问题