Output score , class and id Extraction using TensorFlow object detection

前端 未结 3 1130
执念已碎
执念已碎 2021-01-25 21:33

How can I extract the output scores for objects , object class ,object id detected in images , generated by the Tensorflow Model for Object Detection ?

I want to store

3条回答
  •  隐瞒了意图╮
    2021-01-25 22:11

    You may need some knowledge background about tensorflow object detection, short and quick solution here might be the way you expected :

    with detection_graph.as_default():
      with tf.Session(graph=detection_graph) as sess:
        for image_path in TEST_IMAGE_PATHS:
          image = Image.open(image_path)
          image_np = load_image_into_numpy_array(image)
          image_np_expanded = np.expand_dims(image_np, axis=0)
          image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
          boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
          scores = detection_graph.get_tensor_by_name('detection_scores:0')
          classes = detection_graph.get_tensor_by_name('detection_classes:0')
          num_detections = detection_graph.get_tensor_by_name('num_detections:0')
          # Actual detection.
          (boxes, scores, classes, num_detections) = sess.run(
              [boxes, scores, classes, num_detections],
              feed_dict={image_tensor: image_np_expanded})
          # Visualization of the results of a detection.
          vis_util.visualize_boxes_and_labels_on_image_array(
              image_np,
              np.squeeze(boxes),
              np.squeeze(classes).astype(np.int32),
              np.squeeze(scores),
              category_index,
              use_normalized_coordinates=True,
              line_thickness=8)
          objects = []
          threshold = 0.5 # in order to get higher percentages you need to lower this number; usually at 0.01 you get 100% predicted objects
          for index, value in enumerate(classes[0]):
              object_dict = {}
              if scores[0, index] > threshold:
                  object_dict[(category_index.get(value)).get('name').encode('utf8')] = \
                            scores[0, index]
                  objects.append(object_dict)
          print (objects)
          print(len(np.where(scores[0] > threshold)[0])/num_detections[0])
          plt.figure(figsize=IMAGE_SIZE)
          plt.imshow(image_np)

    Hope this helpful.

提交回复
热议问题