Insert new features from a selectInput in shiny

前端 未结 1 430
被撕碎了的回忆
被撕碎了的回忆 2021-01-25 17:29

Friends could help me with my shiny code below. It is executable code for manipulation. I am managing to generate the scatter plot normally, it varies according to my SliderInpu

1条回答
  •  无人共我
    2021-01-25 18:14

    A few thoughts:

    • Your observeEvent can be dependent on just input$Slider - I was not sure what was intended with other numbers and data frame there

    • Pass inputFilter3 to your function.cl - again keep in mind, as that function is involving reactive inputs, you might want to have as a reactive expression in server

    • You will want to filter your data for the specific cluster plot, something like: df1[df1$cluster == Filter3,]

    • To have the same color scheme between the two plots, you can make a color vector (using whatever palette you wish), and then reference it with scale_color_manual

    This seems to work at my end. For your next example, try to simplify to "minimum" working example if possible to demonstrate what the problem is. Good luck!

    library(shiny)
    library(ggplot2)
    library(rdist)
    library(geosphere)
    library(kableExtra)
    library(readxl)
    library(tidyverse)
    library(DT)
    library(shinythemes)
    
    function.cl<-function(df,k,Filter1,Filter2,Filter3){
    
      #database df
      df<-structure(list(Properties = c(1,2,3,4,5), 
                         Latitude = c(-23.8, -23.8, -23.9, -23.9, -23.9), 
                         Longitude = c(-49.6, -49.6, -49.6, -49.6, -49.6), 
                         Waste = c(526, 350, 526, 469, 285)), class = "data.frame", row.names = c(NA, -5L))
    
      #clusters
      coordinates<-df[c("Latitude","Longitude")]
      d<-as.dist(distm(coordinates[,2:1]))
      fit.average<-hclust(d,method="average") 
      clusters<-cutree(fit.average, k) 
      nclusters<-matrix(table(clusters))  
      df$cluster <- clusters 
    
      #all cluster data df1 and specific cluster df_spec_clust
      df1<-df[c("Latitude","Longitude")]
      df1$cluster<-as.factor(clusters)
      df_spec_clust <- df1[df1$cluster == Filter3,]
    
      #Table to join df and df1
      data_table <- Reduce(merge, list(df, df1))
    
      #Setup colors to share between both plots
      my_colors <- rainbow(length(df1$cluster))
      names(my_colors) <- df1$cluster
    
      #Scatter Plot for all clusters
      g <- ggplot(data = df1,  aes(x=Longitude, y=Latitude, color=cluster)) + 
        geom_point(aes(x=Longitude, y=Latitude), size = 4) +
        scale_color_manual("Legend", values = my_colors)
      plotGD <- g
    
      #Scatter Plot for specific cluster
      g <- ggplot(data = df_spec_clust,  aes(x=Longitude, y=Latitude, color=cluster)) + 
        geom_point(aes(x=Longitude, y=Latitude), size = 4) +
        scale_color_manual("Legend", values = my_colors)
      plotGD1 <- g
    
      return(list(
        "Plot" = plotGD,
        "Plot1" = plotGD1,
        "Data" = data_table
      ))
    }
    
    ui <- bootstrapPage(
      navbarPage(theme = shinytheme("flatly"), collapsible = TRUE,
                 "Cl", 
                 tabPanel("Solution",
                          sidebarLayout(
                            sidebarPanel(
                              radioButtons("filter1", h3("Select properties"),
                                           choices = list("All properties" = 1, 
                                                          "Exclude properties" = 2),
                                           selected = 1),
    
                              radioButtons("filter2", h3("Select properties"),
                                           choices = list("All properties" = 1, 
                                                          "Exclude properties" = 2),
                                           selected = 1),
                              tags$hr(),
                              tags$b(h3("Satisfied?")),
                              tags$b(h5("(a) Choose other filters")),
                              tags$b(h5("(b) Choose clusters")),  
                              sliderInput("Slider", h5(""),
                                          min = 2, max = 5, value = 3),
                            ),
                            mainPanel(
                              tabsetPanel(      
                                tabPanel("Solution", plotOutput("ScatterPlot"))))
    
                          ))),
      tabPanel("",
               sidebarLayout(
                 sidebarPanel(
                   selectInput("Filter3", label = h4("Select just one cluster to show"),""),
                 ),
                 mainPanel(
                   tabsetPanel(
                     tabPanel("Map", plotOutput("ScatterPlot1"))))
               )))
    
    server <- function(input, output, session) {
    
      Modelcl<-reactive({
        function.cl(df,input$Slider,1,1,input$Filter3)
      })
    
      output$ScatterPlot <- renderPlot({
        Modelcl()[[1]]
      })
    
      output$ScatterPlot1 <- renderPlot({
        Modelcl()[[2]]
      })
    
      observeEvent(input$Slider, {
        abc <- req(Modelcl()$Data)
        updateSelectInput(session,'Filter3',
                          choices=sort(unique(abc$cluster)))
      }) 
    
    }
    
    shinyApp(ui = ui, server = server)
    

    0 讨论(0)
提交回复
热议问题