I\'m trying to detect the \"trend\" of a value in a collection.
Let\'s say I have the following:
{ created_at: 2014-12-01, value:1015 }
{ created_at: 201
Rough outline: I would calculate the average for the ten minute period:
> var avgCursor = db.sensor_readings.aggregate([
{ "$match" : { "created_at" : { "$gt" : ten_minutes_ago, "$lte" : now } } }
{ "$group" : { "_id" : 0, "average" : { "$avg" : "$value" } } }
]}
> var avgDoc = avgCursor.toArray()[0]
> avgDoc
{ "_id" : 0, "average" : 23 }
Then I would store it in another collection:
> db.sensor_averages.insert({ "start" : ten_minutes_ago, "end" : now, "average" : avgDoc.average })
Finally, recall the two averages you need to compute the difference, and compute it:
> var diffCursor = db.sensor_averages.find({ "start" : { "$gte" : twenty_minutes_ago } }).sort({ "start" : -1 })
> var diffArray = diffCursor.toArray()
> var difference = diffArray[0].average - diffArray[1].average
You could also skip the periodic aggregations and instead keep a running average updated in sensor_averages
, jumping to a new doc every 10 minutes. At the beginning of each 10 minute period, insert into sensor_averages
a doc
{
"start" : now,
"svalues" : 0,
"nvalues" : 0
}
then on each insert of a sensor_reading
document for the next ten minutes, also update the sensor_averages
doc:
db.sensor_averages.update(
{ "start" : now_rounded_to_the_ten_minute_boundary },
{ "$inc" : { "svalues" : value, "nvalues" : 1 } }
)
Then, when you want the difference between averages, recall the appropriate two docs, divide svalues
by nvalues
to get the average, and subtract.