Portfolio Optimization SOLVE.QP inequality constraints

前端 未结 1 1275
野性不改
野性不改 2021-01-25 05:36

My name is Grégory and I am trying to compute a Minimum Variance portfolio with the following constraints:

  1. Sum of the weights lower or equal to 1 (the portfolio ca
1条回答
  •  一生所求
    2021-01-25 06:14

    Take a look at this script.

    library(stockPortfolio) # Base package for retrieving returns
    library(ggplot2) # Used to graph efficient frontier
    library(reshape2) # Used to melt the data
    library(quadprog) #Needed for solve.QP
    
    # Create the portfolio using ETFs, incl. hypothetical non-efficient allocation
    stocks <- c(
     "VTSMX" = .0,
     "SPY" = .20,
     "EFA" = .10,
     "IWM" = .10,
     "VWO" = .30,
     "LQD" = .20,
     "HYG" = .10)
    
    # Retrieve returns, from earliest start date possible (where all stocks have
    # data) through most recent date
    returns <- getReturns(names(stocks[-1]), freq="week") #Currently, drop index
    
    #### Efficient Frontier function ####
    eff.frontier <- function (returns, short="no", max.allocation=NULL,
     risk.premium.up=.5, risk.increment=.005){
     # return argument should be a m x n matrix with one column per security
     # short argument is whether short-selling is allowed; default is no (short
     # selling prohibited)max.allocation is the maximum % allowed for any one
     # security (reduces concentration) risk.premium.up is the upper limit of the
     # risk premium modeled (see for loop below) and risk.increment is the
     # increment (by) value used in the for loop
    
     covariance <- cov(returns)
     print(covariance)
     n <- ncol(covariance)
    
     # Create initial Amat and bvec assuming only equality constraint
     # (short-selling is allowed, no allocation constraints)
     Amat <- matrix (1, nrow=n)
     bvec <- 1
     meq <- 1
    
     # Then modify the Amat and bvec if short-selling is prohibited
     if(short=="no"){
     Amat <- cbind(1, diag(n))
     bvec <- c(bvec, rep(0, n))
     }
    
     # And modify Amat and bvec if a max allocation (concentration) is specified
     if(!is.null(max.allocation)){
     if(max.allocation > 1 | max.allocation <0){
     stop("max.allocation must be greater than 0 and less than 1")
     }
     if(max.allocation * n < 1){
     stop("Need to set max.allocation higher; not enough assets to add to 1")
     }
     Amat <- cbind(Amat, -diag(n))
     bvec <- c(bvec, rep(-max.allocation, n))
     }
    
     # Calculate the number of loops
     loops <- risk.premium.up / risk.increment + 1
     loop <- 1
    
     # Initialize a matrix to contain allocation and statistics
     # This is not necessary, but speeds up processing and uses less memory
     eff <- matrix(nrow=loops, ncol=n+3)
     # Now I need to give the matrix column names
     colnames(eff) <- c(colnames(returns), "Std.Dev", "Exp.Return", "sharpe")
    
     # Loop through the quadratic program solver
     for (i in seq(from=0, to=risk.premium.up, by=risk.increment)){
     dvec <- colMeans(returns) * i # This moves the solution along the EF
     sol <- solve.QP(covariance, dvec=dvec, Amat=Amat, bvec=bvec, meq=meq)
     eff[loop,"Std.Dev"] <- sqrt(sum(sol$solution*colSums((covariance*sol$solution))))
     eff[loop,"Exp.Return"] <- as.numeric(sol$solution %*% colMeans(returns))
     eff[loop,"sharpe"] <- eff[loop,"Exp.Return"] / eff[loop,"Std.Dev"]
     eff[loop,1:n] <- sol$solution
     loop <- loop+1
     }
    
     return(as.data.frame(eff))
    }
    
    # Run the eff.frontier function based on no short and 50% alloc. restrictions
    eff <- eff.frontier(returns=returns$R, short="no", max.allocation=.50,
     risk.premium.up=1, risk.increment=.001)
    
    # Find the optimal portfolio
    eff.optimal.point <- eff[eff$sharpe==max(eff$sharpe),]
    
    # graph efficient frontier
    # Start with color scheme
    ealred <- "#7D110C"
    ealtan <- "#CDC4B6"
    eallighttan <- "#F7F6F0"
    ealdark <- "#423C30"
    
    ggplot(eff, aes(x=Std.Dev, y=Exp.Return)) + geom_point(alpha=.1, color=ealdark) +
     geom_point(data=eff.optimal.point, aes(x=Std.Dev, y=Exp.Return, label=sharpe),
     color=ealred, size=5) +
     annotate(geom="text", x=eff.optimal.point$Std.Dev,
     y=eff.optimal.point$Exp.Return,
     label=paste("Risk: ",
     round(eff.optimal.point$Std.Dev*100, digits=3),"\nReturn: ",
     round(eff.optimal.point$Exp.Return*100, digits=4),"%\nSharpe: ",
     round(eff.optimal.point$sharpe*100, digits=2), "%", sep=""),
     hjust=0, vjust=1.2) +
     ggtitle("Efficient Frontier\nand Optimal Portfolio") +
     labs(x="Risk (standard deviation of portfolio)", y="Return") +
     theme(panel.background=element_rect(fill=eallighttan),
     text=element_text(color=ealdark),
     plot.title=element_text(size=24, color=ealred))
    ggsave("Efficient Frontier.png")
    

    There is a good explanation of how this works at the link below.

    http://economistatlarge.com/portfolio-theory/r-optimized-portfolio

    0 讨论(0)
提交回复
热议问题