I\'d like to emulate overflow behavior of unsigned 4-bit integers, like this:
>>> x, y = Int4(10), Int4(9)
>>> x + y
Int4(3)
>>> x * y
This isn't as clever as @martijn-pieters' answer, but it does seem to work on python 2.7 and 3.*, whereas I get AttributeError: 'wrapper_descriptor' object has no attribute '__module__'
on python 2.7 with that answer.
import sys
lt_py3 = sys.version_info < (3,)
lt_py33 = sys.version_info < (3, 3)
class Int(int):
'''
int types
'''
def __new__(self, val=0):
return int.__new__(self, val & (1 << self.bits - 1) - 1)
def __max_type_bits(self, other):
'''
determine the largest type and bits available from those in `self` and
`other`
'''
if hasattr(other, 'bits'):
if self.bits < other.bits:
return type(other), other.bits
return type(self), self.bits
def __unary_typed(oper):
'''
return a function that redefines the operation `oper` such that the
result conforms to the type of `self`
'''
def operate(self):
return type(self)(oper(self))
return operate
def __typed(oper):
'''
return a function that redefines the operation `oper` such that the
result conforms to the type of `self` or `other`, whichever is larger
if both are strongly typed (have a `bits` attribute); otherwise return
the result conforming to the type of `self`
'''
def operate(self, other):
typ, bits = self.__max_type_bits(other)
return typ(oper(self, other))
return operate
def __unary_ranged(oper):
'''
return a function that redefines the operator `oper` such that the
result conforms to both the range and the type of `self`
'''
def operate(self, other):
'''
type and bitmask the result to `self`
'''
return type(self)(oper(self) & (1 << self.bits - 1) - 1)
return operate
def __ranged(oper):
'''
return a function that redefines the operator `oper` such that the
result conforms to both the range and the type of `self` or `other`,
whichever is larger if both are strongly typed (have a `bits`
attribute); otherwise return the result conforming to the type of
`self`
'''
def operate(self, other):
'''
type and bitmask the result to either `self` or `other` whichever
is larger
'''
typ, bits = self.__max_type_bits(other)
return typ(oper(self, other) & (1 << bits - 1) - 1)
return operate
# bitwise operations
__lshift__ = __ranged(int.__lshift__)
__rlshift__ = __ranged(int.__rlshift__)
__rshift__ = __ranged(int.__rshift__)
__rrshift__ = __ranged(int.__rrshift__)
__and__ = __typed(int.__and__)
__rand__ = __typed(int.__rand__)
__or__ = __typed(int.__or__)
__ror__ = __typed(int.__ror__)
__xor__ = __typed(int.__xor__)
__rxor__ = __typed(int.__rxor__)
__invert__ = __unary_typed(int.__invert__)
# arithmetic operations
if not lt_py3:
__ceil__ = __unary_typed(int.__ceil__)
__floor__ = __unary_typed(int.__floor__)
__int__ = __unary_typed(int.__int__)
__abs__ = __unary_typed(int.__abs__)
__pos__ = __unary_typed(int.__pos__)
__neg__ = __unary_ranged(int.__neg__)
__add__ = __ranged(int.__add__)
__radd__ = __ranged(int.__radd__)
__sub__ = __ranged(int.__sub__)
__rsub__ = __ranged(int.__rsub__)
__mod__ = __ranged(int.__mod__)
__rmod__ = __ranged(int.__rmod__)
__mul__ = __ranged(int.__mul__)
__rmul__ = __ranged(int.__rmul__)
if lt_py3:
__div__ = __ranged(int.__div__)
__rdiv__ = __ranged(int.__rdiv__)
__floordiv__ = __ranged(int.__floordiv__)
__rfloordiv__ = __ranged(int.__rfloordiv__)
__pow__ = __ranged(int.__pow__)
__rpow__ = __ranged(int.__rpow__)
class Int4(Int):
bits = 4
x, y = Int4(10), Int4(9)
print(x + y)
print(x*y)
Running this code in a file called answer.py
produces
$ python2.7 answer.py
3
2
$ python3.4 answer.py
3
2