I have a doubt in how did the author reach the intuition behind the formula to calculate the (m + n -2)C n-1 in this problem - https://www.geeksforgeeks.org/count-possible-paths
The formula for nCr(n,k)
is:
| n | n!
| | = ---------
| k | k!.(n-k)!
The problem is that the factorials will get very big soon and overflow standard variables even for small inputs. To avoid that we just eliminate redundant operations... I can rewrite to this:
| n | n! 1*2*3*...*n
| | = --------- = -----------------------------
| k | k!.(n-k)! 1*2*3*...*k * 1*2*3*...*(n-k)
Now we can see that first n-r
or k
(depends on which is bigger) multiplications are the same on both sides of the division so we can skip them so (in case k>=n-r
):
| n | n! (k+1)*(k+2)*(k+3)*...*n
| | = --------- = -----------------------------
| k | k!.(n-k)! 1*2*3*...*(n-k)
Also if we do this in loop and divide after each multiplication the sub result will keep small:
| n | n! (k+1) (k+2) (k+3) (n)
| | = --------- = ----- * ----- * ----- * ... * -----
| k | k!.(n-k)! 1 2 3 (n-k)
And yes there is the same number of therms on both sides of the division. If I understood it correctly your code should do nCr(m+n-2,n-1)
so the substitution to match formula will be:
n` = m+n-2
k` = n-1
rewriting to:
| m+n-2 | (n-1+1) (n-1+2) (n-1+3) (m+n-2)
| | = ------- * ------- * ------- * ... * -----------
| n-1 | 1 2 3 (m+n-2-n+1)
| m+n-2 | (n) (n+1) (n+2) (m+n-2)
| | = --- * ----- * ----- * ... * -------
| n-1 | 1 2 3 (m-1)
so your loop is doing a PI
of i/(i-n+1)
where i={ n,n+1,...,m+n-1 }
which matches the equation above...
Beware this is not exact nCr
as it needs to be computed on floating point so rounding errors occurs on each iteration !!! So the output can be off a small bit !!! However this can be computed on Integers in similar manner (without any precision loss) but instead of dividing at each iterations you divide both dividents with common divisors to keep them "small". Ideally by first few primes. Here a small C++ example of this (both float and int versions) I just bustled together:
//---------------------------------------------------------------------------
//
// | n | n! combinations = fact(n)/(fact(k)*fact(n-k))
// | | = --------- how many combinations of k items from n items are possible
// | k | k!.(n-k)! when order does not matter
//
DWORD nCr(DWORD n,DWORD k)
{
DWORD a,b,ia,ib,j,m,p;
const DWORD prime[]={2,3,5,7,11,13,17,19,23,29,31,0};
if (k> n) return 0;
if (k==n) return 1;
m=n-k;
for (a=1,b=1,ia=k+1,ib=2;(ia<=n)||(ib<=m);)
{
if ((b<=a)&&(ib<=m)){ b*=ib; ib++; } // multiply the smaller number if possible
else if (ia<=n) { a*=ia; ia++; }
for (;((a|b)&1)==0;a>>=1,b>>=1); // divide a,b by 2 if possible
for (j=1;;j++) // divide a,b by next few prmes (skip 2) if possible
{
p=prime[j];
if (!p) break;
if (a n) return 0;
if (k==n) return 1;
float c;
DWORD i,m=n-k;
for (c=1.0,i=1;i<=m;i++)
{
c*=(k+i);
c/=(i);
}
return c;
}
//---------------------------------------------------------------------------
Where DWORD
is 32 bit unsigned integer (but any integer variable type can be used)... This works correctly (on 32 bit ) up to nCr(32,15)
Here comparison between the two:
n k nCr(n,k) nCr_approx(n,k)
32 0 1 1.000
32 1 32 32.000
32 2 496 496.000
32 3 4960 4960.000
32 4 35960 35960.000
32 5 201376 201376.000
32 6 906192 906191.938 *** float is off
32 7 3365856 3365856.000
32 8 10518300 10518300.000
32 9 28048800 28048802.000 *** float is off
32 10 64512240 64512240.000
32 11 129024480 129024488.000 *** float is off
32 12 225792840 225792864.000 *** float is off
32 13 347373600 347373632.000 *** float is off
32 14 471435600 471435584.000 *** float is off
32 15 565722720 565722688.000 *** float is off
32 16 64209478 601080384.000 *** int overflow
32 17 565722720 565722752.000 *** float is off
32 18 471435600 471435584.000 *** float is off
32 19 347373600 347373600.000
32 20 225792840 225792832.000 *** float is off
32 21 129024480 129024488.000 *** float is off
32 22 64512240 64512236.000 *** float is off
32 23 28048800 28048800.000
32 24 10518300 10518299.000 *** float is off
32 25 3365856 3365856.000
32 26 906192 906192.000
32 27 201376 201376.000
32 28 35960 35960.000
32 29 4960 4960.000
32 30 496 496.000
32 31 32 32.000
32 32 1 1.000
Yes you can use double
instead but always take in mind the result might be slightly off !!!