I\'ve written the code for multiplicative inverse of modulo m. It works for most of the initial cases but not for some. The code is below:
(define (inverse x m)
These two functions below can help you as well.
Here’s how we find the multiplicative inverse d. We want e*d = 1(mod n), which means that ed + nk = 1 for some integer k. So we’ll write a procedure that solves the general equation ax + by = 1, where a and b are given, x and y are variables, and all of these values are integers. We’ll use this procedure to solve ed + nk = 1 for d and k. Then we can throw away k and simply return d. >
(define (ax+by=1 a b)
(if (= b 0)
(cons 1 0)
(let* ((q (quotient a b))
(r (remainder a b))
(e (ax+by=1 b r))
(s (car e))
(t (cdr e)))
(cons t (- s (* q t))))))
This function is a general solution to an equation in form of ax+by=1 where a and b is given.The inverse-mod function simply uses this solution and returns the inverse.
(define inverse-mod (lambda (a m)
(if (not (= 1 (gcd a m)))
(display "**Error** No inverse exists.")
(if (> 0(car (ax+by=1 a m)))
(+ (car (ax+by=1 a m)) m)
(car (ax+by=1 a m))))))
Some test cases are :
(inverse-mod 5 11) ; -> 9 5*9 = 45 = 1 (mod 11)
(inverse-mod 9 11) ; -> 5
(inverse-mod 7 11) ; -> 8 7*8 = 56 = 1 (mod 11)
(inverse-mod 5 12) ; -> 5 5*5 = 25 = 1 (mod 12)
(inverse-mod 8 12) ; -> error no inverse exists