I have the following problem. Lets say this is my CSV
id f1 f2 f3
1 4 5 5
1 3 1 0
1 7 4 4
1 4 3 1
1 1 4 6
2 2 6 0
..........
Groupby is your friend.
This will scale very well; only a small constant in the number of features. It will be roughly O(number of groups)
In [28]: features = ['f1','f2','f3']
Create some test data, group sizes are 7-12, 70k groups
In [29]: def create_df(i):
....: l = np.random.randint(7,12)
....: df = DataFrame(dict([ (f,np.arange(l)) for f in features ]))
....: df['A'] = i
....: return df
....:
In [30]: df = concat([ create_df(i) for i in xrange(70000) ])
In [39]: df.info()
Int64Index: 629885 entries, 0 to 9
Data columns (total 4 columns):
f1 629885 non-null int64
f2 629885 non-null int64
f3 629885 non-null int64
A 629885 non-null int64
dtypes: int64(4)
Create a frame where you select the first 3 rows and the final row from each group (note that this WILL handle groups of size < 4, however your final row may overlap another, you may wish to do a groupby.filter
to remedy this)
In [31]: groups = concat([df.groupby('A').head(3),df.groupby('A').tail(1)]).sort_index()
# This step is necesary in pandas < master/0.14 as the returned fields
# will include the grouping field (the A), (is a bug/API issue)
In [33]: groups = groups[features]
In [34]: groups.head(20)
Out[34]:
f1 f2 f3
A
0 0 0 0 0
1 1 1 1
2 2 2 2
7 7 7 7
1 0 0 0 0
1 1 1 1
2 2 2 2
9 9 9 9
2 0 0 0 0
1 1 1 1
2 2 2 2
8 8 8 8
3 0 0 0 0
1 1 1 1
2 2 2 2
8 8 8 8
4 0 0 0 0
1 1 1 1
2 2 2 2
9 9 9 9
[20 rows x 3 columns]
In [38]: groups.info()
MultiIndex: 280000 entries, (0, 0) to (69999, 9)
Data columns (total 3 columns):
f1 280000 non-null int64
f2 280000 non-null int64
f3 280000 non-null int64
dtypes: int64(3)
And pretty fast
In [32]: %timeit concat([df.groupby('A').head(3),df.groupby('A').tail(1)]).sort_index()
1 loops, best of 3: 1.16 s per loop
For further manipulation you usually should stop here and use this (as its in a nice grouped format that's easy to deal with).
If you want to translate this to a wide format
In [35]: dfg = groups.groupby(level=0).apply(lambda x: Series(x.values.ravel()))
In [36]: %timeit groups.groupby(level=0).apply(lambda x: Series(x.values.ravel()))
dfg.head()
groups.info()
1 loops, best of 3: 14.5 s per loop
In [40]: dfg.columns = [ "{0}_{1}".format(f,i) for i in range(1,5) for f in features ]
In [41]: dfg.head()
Out[41]:
f1_1 f2_1 f3_1 f1_2 f2_2 f3_2 f1_3 f2_3 f3_3 f1_4 f2_4 f3_4
A
0 0 0 0 1 1 1 2 2 2 7 7 7
1 0 0 0 1 1 1 2 2 2 9 9 9
2 0 0 0 1 1 1 2 2 2 8 8 8
3 0 0 0 1 1 1 2 2 2 8 8 8
4 0 0 0 1 1 1 2 2 2 9 9 9
[5 rows x 12 columns]
In [42]: dfg.info()
Int64Index: 70000 entries, 0 to 69999
Data columns (total 12 columns):
f1_1 70000 non-null int64
f2_1 70000 non-null int64
f3_1 70000 non-null int64
f1_2 70000 non-null int64
f2_2 70000 non-null int64
f3_2 70000 non-null int64
f1_3 70000 non-null int64
f2_3 70000 non-null int64
f3_3 70000 non-null int64
f1_4 70000 non-null int64
f2_4 70000 non-null int64
f3_4 70000 non-null int64
dtypes: int64(12)