I\'m pretty new to Scala and Spark and I\'m not able to create a correlation matrix from a file of ratings. It\'s similar to this question but I have sparse data in the matrix f
I believe this code should accomplish what you want:
import org.apache.spark.mllib.stat.Statistics
import org.apache.spark.mllib.linalg._
...
val corTest = input.map { case (line: String) =>
val split = line.split(",").drop(1)
split.map(elem => if (elem.trim.isEmpty) 0.0 else elem.toDouble)
}.map(arr => Vectors.dense(arr))
val corrMatrix = Statistics.corr(corTest)
Here, we are mapping your input into a String
array, dropping the user id element, zeroing out your whitespace, and finally creating a dense vector from the resultant array. Also, note that Pearson's method is used by default if no method is supplied.
When run in shell with some examples, I see the following:
scala> val input = sc.parallelize(Array("123, , , 3, , 4.5", "456, 1, 2, 3, , 4", "789, 4, 2.5, , 0.5, 4", "000, 5, 3.5, , 4.5, "))
input: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[18] at parallelize at :16
scala> val corTest = ...
corTest: org.apache.spark.rdd.RDD[org.apache.spark.mllib.linalg.Vector] = MappedRDD[20] at map at :18
scala> val corrMatrix = Statistics.corr(corTest)
...
corrMatrix: org.apache.spark.mllib.linalg.Matrix =
1.0 0.9037378388935388 -0.9701425001453317 ... (5 total)
0.9037378388935388 1.0 -0.7844645405527361 ...
-0.9701425001453317 -0.7844645405527361 1.0 ...
0.7709910794438823 0.7273340668525836 -0.6622661785325219 ...
-0.7513578452729373 -0.7560667258329613 0.6195855517393626 ...