I have a dataset that I want to visualize overall and disaggregated by a few different variables. I created a flexdashboard with a toy shiny app to select the type of disaggrega
This is a good place to make a function, to shorten your code and make it less prone to error.
http://r4ds.had.co.nz/functions.html
A complicating bit is that programming with dplyr
often requires wading into a framework called tidyeval, which is very powerful but can be intimidating.
https://dplyr.tidyverse.org/articles/programming.html
(Here's an alternative approach that sidesteps tidyeval: https://cran.r-project.org/web/packages/seplyr/vignettes/using_seplyr.html)
In your scenario, it's possible to avoid these challenges entirely by doing a bit of manipulation before and after your function. It's not as elegant, but works.
BTW, I can't guarantee it'll work since you didn't share a verifiable reprex (e.g. including a sample of data with the same form as yours), but it worked with the fake data I made up. (See bottom.) Sorry, I missed the chunk where your sample data was provided.
prep_dat <- function(filtered_dat, col_name = "total") {
filtered_dat %>%
mutate(new = 1) %>%
arrange(date) %>%
# time series analysis
tibbletime::as_tbl_time(index = date) %>% # convert to tibble time object
select(date, new) %>%
tibbletime::collapse_by("1 week", side = "start", clean = TRUE) %>%
group_by(date) %>%
mutate(total = sum(new, na.rm = TRUE)) %>%
distinct(date, .keep_all = TRUE) %>%
ungroup() %>%
# expand matrix to include weeks without data
complete(
date = seq(date[1], date[length(date)], by = "1 week"),
fill = list(total = 0)
)
}
Then you could call it with your filtered data and the name of the total column. This fragment should be able to replace the ~20 lines you're currently using:
males <- prep_dat(dat_fake %>%
filter(sex == "male")) %>%
rename("total_m" = "total")
Fake data that I tested on:
dat_fake <- tibble(
date = as.Date("2018-01-01") + runif(500, 0, 100),
new = runif(500, 0, 100),
sex = sample(c("male", "female"),
500, replace = TRUE),
lang = sample(c("english", "french", "spanish", "portuguese", "tagalog"),
500, replace = TRUE)
)