I would like to calculate the mean and standard deviation for every nth (in my case every 6) rows (or samples). The following function gives me the means for every 6 rows (96 ro
You can apply the function to each column with sapply
:
sapply(iris[1:4], function(x) colMeans(matrix(x, nrow=6)))
Sepal.Length Sepal.Width Petal.Length Petal.Width
[1,] 4.950000 3.383333 1.450000 0.2333333
[2,] 4.850000 3.316667 1.483333 0.2000000
[3,] 5.183333 3.633333 1.316667 0.2500000
...
[23,] 6.533333 2.950000 5.583333 1.9333333
[24,] 6.516667 3.033333 5.316667 2.1333333
[25,] 6.383333 3.033333 5.266667 2.1333333
Compare with creating the means of the first six rows manually:
colMeans(iris[1:6, 1:4])
Sepal.Length Sepal.Width Petal.Length Petal.Width
4.9500000 3.3833333 1.4500000 0.2333333
You can also do this with aggregate
given the proper by
argument:
aggregate(iris[1:4], by=list((seq(nrow(iris))-1) %/% 6), FUN=mean)
Group.1 Sepal.Length Sepal.Width Petal.Length Petal.Width
1 0 4.950000 3.383333 1.450000 0.2333333
2 1 4.850000 3.316667 1.483333 0.2000000
3 2 5.183333 3.633333 1.316667 0.2500000
...
This works by creating a vector which identifies the groups to be averaged:
(seq(nrow(iris))-1) %/% 6
[1] 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 7 7 8 8 8 8
[53] 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 11 12 12 12 12 12 12 13 13 13 13 13 13 14 14 14 14 14 14 15 15 15 15 15 15 16 16 16 16 16 16 17 17
[105] 17 17 17 17 18 18 18 18 18 18 19 19 19 19 19 19 20 20 20 20 20 20 21 21 21 21 21 21 22 22 22 22 22 22 23 23 23 23 23 23 24 24 24 24 24 24
The sapply
solution returns a matrix, whereas the aggregate
solution returns a data frame, in case one is more desirable.