I have some trouble with threading in my application. I have a multi-threaded client/server application. I\'m also using C# MonoDevelop for Unity3d. Not sure if it makes any dif
.NET already has a concept of a SynchronizationContext, most often used for UI apps where thread affinity is required to invoke operations on UI controls (e.g. in WPF or WinForms). However, even outside a UI app, you can reuse these concepts for a general purpose thread-affinitized work queue.
This sample shows how to use the WPF DispatcherSynchronizationContext (from WindowsBase.dll
) in a simple console application, together with the .NET 4.0 task classes (TaskScheduler / Task) to invoke actions originating on child threads back on the main program thread.
using System;
using System.Threading;
using System.Threading.Tasks;
using System.Windows.Threading;
internal sealed class Program
{
private static void Main(string[] args)
{
int threadCount = 2;
using (ThreadData data = new ThreadData(threadCount))
{
Thread[] threads = new Thread[threadCount];
for (int i = 0; i < threadCount; ++i)
{
threads[i] = new Thread(DoOperations);
}
foreach (Thread thread in threads)
{
thread.Start(data);
}
Console.WriteLine("Starting...");
// Start and wait here while all work is dispatched.
data.RunDispatcher();
}
// Dispatcher has exited.
Console.WriteLine("Shutdown.");
}
private static void DoOperations(object objData)
{
ThreadData data = (ThreadData)objData;
try
{
// Start scheduling operations from child thread.
for (int i = 0; i < 5; ++i)
{
int t = Thread.CurrentThread.ManagedThreadId;
int n = i;
data.ExecuteTask(() => SayHello(t, n));
}
}
finally
{
// Child thread is done.
data.OnThreadCompleted();
}
}
private static void SayHello(int requestingThreadId, int operationNumber)
{
Console.WriteLine(
"Saying hello from thread {0} ({1}) on thread {2}.",
requestingThreadId,
operationNumber,
Thread.CurrentThread.ManagedThreadId);
}
private sealed class ThreadData : IDisposable
{
private readonly Dispatcher dispatcher;
private readonly TaskScheduler scheduler;
private readonly TaskFactory factory;
private readonly CountdownEvent countdownEvent;
// In this example, we initialize the countdown event with the total number
// of child threads so that we know when all threads are finished scheduling
// work.
public ThreadData(int threadCount)
{
this.dispatcher = Dispatcher.CurrentDispatcher;
SynchronizationContext context =
new DispatcherSynchronizationContext(this.dispatcher);
SynchronizationContext.SetSynchronizationContext(context);
this.scheduler = TaskScheduler.FromCurrentSynchronizationContext();
this.factory = new TaskFactory(this.scheduler);
this.countdownEvent = new CountdownEvent(threadCount);
}
// This method should be called by a child thread when it wants to invoke
// an operation back on the main dispatcher thread. This will block until
// the method is done executing.
public void ExecuteTask(Action action)
{
Task task = this.factory.StartNew(action);
task.Wait();
}
// This method should be called by threads when they are done
// scheduling work.
public void OnThreadCompleted()
{
bool allThreadsFinished = this.countdownEvent.Signal();
if (allThreadsFinished)
{
this.dispatcher.InvokeShutdown();
}
}
// This method should be called by the main thread so that it will begin
// processing the work scheduled by child threads. It will return when
// the dispatcher is shutdown.
public void RunDispatcher()
{
Dispatcher.Run();
}
public void Dispose()
{
this.Dispose(true);
GC.SuppressFinalize(this);
}
// Dispose all IDisposable resources.
private void Dispose(bool disposing)
{
if (disposing)
{
this.countdownEvent.Dispose();
}
}
}
}
Sample output:
Starting... Saying hello from thread 3 (0) on thread 1. Saying hello from thread 4 (0) on thread 1. Saying hello from thread 3 (1) on thread 1. Saying hello from thread 4 (1) on thread 1. Saying hello from thread 3 (2) on thread 1. Saying hello from thread 4 (2) on thread 1. Saying hello from thread 3 (3) on thread 1. Saying hello from thread 4 (3) on thread 1. Saying hello from thread 3 (4) on thread 1. Saying hello from thread 4 (4) on thread 1. Shutdown.