Using rollapply function for VaR calculation using R

后端 未结 1 485
名媛妹妹
名媛妹妹 2021-01-23 01:11

I did the following for calculating Value at Risk (VaR) over 20 period rolling window:

require(PerformanceAnalytics); require(zoo)
data(edhec)
class(edhec) # [1]         


        
1条回答
  •  不知归路
    2021-01-23 01:57

    There are columns which are completely missing in first few (3) width=20 windows, hence the error

    data(managers)
    class(managers) # [1] "xts" "zoo"
    class(managers$HAM4) # [1] "xts" "zoo"
    var2<-rollapply(managers,width=20,FUN=function(x) VaR(R=x,p=.95,method="modified"),by.column=TRUE)
    

    With traceback, you can inspect the possible sources of error, notice step 12, of na.omit(x), see ?na.omit

    traceback()
    #17: as.matrix.xts(x)
    #16: as.matrix(x)
    #15: as.vector(as.matrix(x), mode = mode)
    #14: as.vector.zoo(x, mode)
    #13: as.vector(x, mode)
    #12: as.vector(na.omit(R[, column]))
    #11: VaR.CornishFisher(R = R, p = p)
    #10: VaR(R = managers, p = 0.95, method = "modified") at #1
    #9: FUN(.subset_xts(data, (i - width + 1):i, j), ...)
    #8: FUN(newX[, i], ...)
    #7: apply(ind, 1, function(i) FUN(.subset_xts(data, (i - width + 
    #       1):i, j), ...))
    #6: FUN(1:10[[5L]], ...)
    #5: lapply(X = X, FUN = FUN, ...)
    #4: sapply(1:NCOL(data), function(j) apply(ind, 1, function(i) FUN(.subset_xts(data, 
    #       (i - width + 1):i, j), ...)))
    #3: xts(sapply(1:NCOL(data), function(j) apply(ind, 1, function(i) FUN(.subset_xts(data, 
    #       (i - width + 1):i, j), ...))), tt, if (by == 1) attr(data, 
    #       "frequency"))
    #2: rollapply.xts(managers, width = 20, FUN = function(managers) VaR(R = managers, 
    #       p = 0.95, method = "modified"), by.column = TRUE)
    #1: rollapply(managers, width = 20, FUN = function(managers) VaR(R = managers, 
    #       p = 0.95, method = "modified"), by.column = TRUE)
    #
    

    For your first window=20 (actually around 60) observations, columns HAM5,HAM6 are missing completely and these result in empty data in the step 12. above

    head(managers,20)
    
    #Empty data since NA columns are omitted see step 12 above.
    na.omit(head(managers,20))
    #     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
    #>
    

    There are no missing values in edhec data , hence there were no issues

    any(is.na(edhec))
    any(is.na(managers))
    

    An easier way is to retain rows which do not have any missing values and compute statistics over them

    managers_sub = managers[complete.cases(managers),]   
    
    var3<-rollapply(managers_sub,width=20,FUN=function(x) VaR(R=x,p=.95,method="modified"),by.column=TRUE)
    

    OR

    You could find the index where none of the columns are completely missing and subset accordingly
    
    sapply(colnames(managers),function(x) all(is.na(managers[60:80,x])))
    

    0 讨论(0)
提交回复
热议问题