I have a datafarme which looks like as follows (there are more columns having been dropped off):
memberID shipping_country
264991
264991
You can use chained groupby
s, one with forward fill and one with backfill:
# replace blank values with `NaN` first:
df['shipping_country'].replace('',pd.np.nan,inplace=True)
df.iloc[::-1].groupby('memberID').ffill().groupby('memberID').bfill()
memberID shipping_country
0 264991 Canada
1 264991 Canada
2 100 USA
3 5000 UK
4 5000 UK
This method will also allow a group made up of all NaN
to remain NaN
:
>>> df
memberID shipping_country
0 264991
1 264991 Canada
2 100 USA
3 5000
4 5000 UK
5 1
6 1
df['shipping_country'].replace('',pd.np.nan,inplace=True)
df.iloc[::-1].groupby('memberID').ffill().groupby('memberID').bfill()
memberID shipping_country
0 264991 Canada
1 264991 Canada
2 100 USA
3 5000 UK
4 5000 UK
5 1 NaN
6 1 NaN