I have a square boolean matrix M of size N, stored by rows and I want to count the number of bits set to 1 for each column.
For instance for n=4:
1101
01
I eventually wrote another implementation, following the high entropy SWAR approach proposed by Peter Cordes. This implementation is recursive and relies on C++ template specialization.
The global idea is to fill N-bit accumulators to their maximum without carry overflow (this is where recursion is used). When these accumulators are filled, we update the grand totals and we start again with new N-bit accumulators to fill until all rows have been processed.
Here is the code (see function test_SWAR_recursive
):
#include
#include
#include
#include
#include
#include
#include
using namespace std;
using namespace std::chrono;
// avoid the #include
extern "C" u_int64_t ReadTSC();
static double deviation (double n, double sum2, double sum) { return sqrt (sum2/n - (sum/n)*(sum/n)); }
////////////////////////////////////////////////////////////////////////////////
// Recursive SWAR approach (with template specialization)
////////////////////////////////////////////////////////////////////////////////
template
struct RecursiveSWAR
{
// Number of accumulators for current depth
static const int N = 1<::MAGIC_NUMBER
* (1 + (1<<(1<<(DEPTH-1))))
/ (1 + (1<<(1<<(DEPTH+0))));
static void fillAccumulators (u_int32_t*& begin, const u_int32_t* end, Array accumulators)
{
// We reset the N-bit accumulators
for (int i=0; i=3) if (begin>=end) { return; }
typename RecursiveSWAR::Array accumulatorsMinusOne;
// We load a register with the mask
__m256i mask = _mm256_set1_epi32 (RecursiveSWAR::MAGIC_NUMBER);
// We fill the N-bit accumulators to their maximum capacity without carry overflow
for (int i=0; i::fillAccumulators (begin, end, accumulatorsMinusOne);
// We update the N-bit accumulators from the (N-1)-bit accumulators
for (int j=0; j::N; j++)
{
// LOW part
accumulators[2*j+0] = _mm256_add_epi32 (
accumulators[2*j+0],
_mm256_and_si256 (
accumulatorsMinusOne[j],
mask
)
);
// HIGH part
accumulators[2*j+1] = _mm256_add_epi32 (
accumulators[2*j+1],
_mm256_and_si256 (
_mm256_srli_epi32 (
accumulatorsMinusOne[j],
RecursiveSWAR::N
),
mask
)
);
}
}
}
};
// Template specialization for DEPTH=0
template<>
struct RecursiveSWAR<0>
{
static const int N = 1;
typedef __m256i Array[N];
static const u_int32_t MAGIC_NUMBER = 0x55555555;
static void fillAccumulators (u_int32_t*& begin, const u_int32_t* end, Array result)
{
// We just load 8 rows in the AVX2 register
result[0] = _mm256_loadu_si256 ((__m256i*)begin);
// We update the iterator
begin += 1*sizeof(__m256i)/sizeof(u_int32_t);
}
};
template struct TypeInfo { };
template<> struct TypeInfo<3> { typedef u_int8_t Type; };
template<> struct TypeInfo<4> { typedef u_int16_t Type; };
template<> struct TypeInfo<5> { typedef u_int32_t Type; };
unsigned char reversebits (unsigned char b)
{
return ((b * 0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32;
}
void test_SWAR_recursive (uint64_t nbRows, const uint32_t* bitmap, uint32_t* globalSums)
{
static const int DEPTH = 4;
RecursiveSWAR::Array accumulators;
uint32_t* begin = (uint32_t*) bitmap;
const uint32_t* end = bitmap + nbRows;
// We reset the grand totals
for (int i=0; i<32; i++) { globalSums[i] = 0; }
while (begin < end)
{
// We fill the N-bit accumulators to the maximum without overflow
RecursiveSWAR::fillAccumulators (begin, end, accumulators);
// We update grand totals from the filled N-bit accumulators
for (int i=0; i::N; i++)
{
int r = reversebits(i) >> (8-DEPTH);
u_int32_t* sums = globalSums+r;
TypeInfo::Type* values = (TypeInfo::Type*) (accumulators+i);
for (int j=0; j<8*(1<<(5-DEPTH)); j++)
{
sums[(j*RecursiveSWAR::N) % 32] += values[j];
}
}
}
}
////////////////////////////////////////////////////////////////////////////////
void execute (
const char* name,
void (*fct)(uint64_t nbRows, const uint32_t* bitmap, uint32_t* globalSums),
size_t nbRuns,
uint64_t nbRows,
u_int32_t* bitmap
)
{
uint32_t sums[32];
double timeTotal=0;
double cycleTotal=0;
double timeTotal2=0;
double cycleTotal2=0;
uint64_t check=0;
for (size_t n=0; n(system_clock::now().time_since_epoch());
uint64_t c0 = ReadTSC();
// We run the test
(*fct) (nbRows, bitmap, sums);
uint64_t c1 = ReadTSC();
milliseconds t1 = duration_cast< milliseconds >(system_clock::now().time_since_epoch());
timeTotal += (t1-t0).count();
cycleTotal += (double)(c1-c0) / nbRows;
timeTotal2 += (t1-t0).count() * (t1-t0).count();
cycleTotal2 += ((double)(c1-c0) / nbRows) * ((double)(c1-c0) / nbRows);
// We compute some dummy checksum
for (size_t k=0; k<32; k++) { check += (k+1)*sums[k]; }
}
printf ("%-21s | %5.0lf (%5.1lf) | %5.2lf (%5.3lf) | %.3lf | 0x%lx\n",
name,
timeTotal / nbRuns,
deviation (nbRuns, timeTotal2, timeTotal),
cycleTotal/nbRuns,
deviation (nbRuns, cycleTotal2, cycleTotal),
nbRows * cycleTotal / timeTotal / 1000000.0,
check/nbRuns
);
}
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv)
{
// We set rows number as 2^n where n is the provided argument
// For simplification, we assume that the rows number is a multiple of 32
uint64_t nbRows = 1ULL << (argc>1 ? atoi(argv[1]) : 28);
size_t nbRuns = argc>2 ? atoi(argv[2]) : 10;
// We build an bitmap of size nbRows*32
uint64_t actualNbRows = nbRows + 100000;
uint32_t* bitmap = (uint32_t*)_mm_malloc(sizeof(uint32_t)*actualNbRows, 256);
if (bitmap==nullptr)
{
fprintf(stderr, "unable to allocate the bitmap\n");
exit(1);
}
memset (bitmap, 0, sizeof(u_int32_t)*actualNbRows);
// We fill the bitmap with random values
// srand(time(nullptr));
for (uint64_t i=0; i
The size of the accumulators is 2DEPTH in this code. Note that this implementation is valid up to DEPTH=5. For DEPTH=4, here are the performance results compared to the implementation of Peter Cordes (named high entropy SWAR):
The graph gives the number of cycles required to process a row (of 32 items) as a function of the number of rows of the matrix. As expected, the results are pretty similar since the main idea is the same. It is interesting to note the three parts of the graph:
I guess that CPU caches properties can explain this behaviour.