I have a pandas dataframe that incorporates dates, customers, items, and then dollar value for purchases.
date customer product amt
1/1/2017 tim
Notice ,this using the stack
and unstack
couple of times
df.set_index(['date','customer','product']).amt.unstack(-3).\
reindex(columns=pd.date_range(df['date'].min(),
df['date'].max()),fill_value=0).\
stack(dropna=False).unstack().stack(dropna=False).\
unstack('customer').stack(dropna=False).reset_index().\
fillna(0).sort_values(['level_1','customer','product'])
Out[314]:
product level_1 customer 0
0 apple 2017-01-01 jim 0.0
12 melon 2017-01-01 jim 2.0
24 orange 2017-01-01 jim 0.0
1 apple 2017-01-01 tim 3.0
13 melon 2017-01-01 tim 0.0
25 orange 2017-01-01 tim 0.0
2 apple 2017-01-01 tom 5.0
14 melon 2017-01-01 tom 4.0
26 orange 2017-01-01 tom 0.0
3 apple 2017-01-02 jim 0.0
15 melon 2017-01-02 jim 0.0
27 orange 2017-01-02 jim 0.0
4 apple 2017-01-02 tim 0.0
16 melon 2017-01-02 tim 0.0
28 orange 2017-01-02 tim 0.0
5 apple 2017-01-02 tom 0.0
17 melon 2017-01-02 tom 0.0
29 orange 2017-01-02 tom 0.0
6 apple 2017-01-03 jim 0.0
18 melon 2017-01-03 jim 0.0
30 orange 2017-01-03 jim 0.0
7 apple 2017-01-03 tim 0.0
19 melon 2017-01-03 tim 0.0
31 orange 2017-01-03 tim 0.0
8 apple 2017-01-03 tom 0.0
20 melon 2017-01-03 tom 0.0
32 orange 2017-01-03 tom 0.0
9 apple 2017-01-04 jim 2.0
21 melon 2017-01-04 jim 0.0
33 orange 2017-01-04 jim 0.0
10 apple 2017-01-04 tim 0.0
22 melon 2017-01-04 tim 3.0
34 orange 2017-01-04 tim 0.0
11 apple 2017-01-04 tom 0.0
23 melon 2017-01-04 tom 1.0
35 orange 2017-01-04 tom 4.0