I am trying to swap two nodes in a doubly linked list. Below is the part of program having swap function.
int swap (int x, int y)
{
struct node *temp = NU
The code will fail if ptr1 == head (ptr1->prev == NULL) or ptr2 == head (ptr2->prev == NULL), because it ends up trying to use head->next, which doesn't exist. There also needs to be a check for the end of a list, if ptr1->next == NULL or ptr2->next == NULL, which can be handled using a local tail pointer. Using pointers to pointer to node can simplify the code. For example the pointer to next pointer to ptr1 could be &ptr1->prev->next or &head. The pointer to prev pointer to ptr2 could be &ptr2->next->prev or &tail (and set tail = ptr2).
Using pointers to pointer to node fixes the issue with swapping adjacent nodes. Also temp can be a pointer to node.
Example code using pointers to nodes (instead of counts) to swap:
typedef struct node NODE;
/* ... */
NODE * SwapNodes(NODE *head, NODE *ptr1, NODE *ptr2)
{
NODE **p1pn; /* & ptr1->prev->next */
NODE **p1np; /* & ptr1->next->prev */
NODE **p2pn; /* & b->prev->next */
NODE **p2np; /* & b->next->prev */
NODE *tail; /* only used when x->next == NULL */
NODE *temp; /* temp */
if(head == NULL || ptr1 == NULL || ptr2 == NULL || ptr1 == ptr2)
return head;
if(head == ptr1)
p1pn = &head;
else
p1pn = &ptr1->prev->next;
if(head == ptr2)
p2pn = &head;
else
p2pn = &ptr2->prev->next;
if(ptr1->next == NULL){
p1np = &tail;
tail = ptr1;
} else
p1np = &ptr1->next->prev;
if(ptr2->next == NULL){
p2np = &tail;
tail = ptr2;
}else
p2np = &ptr2->next->prev;
*p1pn = ptr2;
*p1np = ptr2;
*p2pn = ptr1;
*p2np = ptr1;
temp = ptr1->prev;
ptr1->prev = ptr2->prev;
ptr2->prev = temp;
temp = ptr1->next;
ptr1->next = ptr2->next;
ptr2->next = temp;
return head;
}