I am training an LDA model in pyspark (spark 2.1.1) on a customers review dataset. Now based on that model I want to predict the topics in the new unseen text.
I am usin
You're going to need to pre-process the new data:
# import a new data set to be passed through the pre-trained LDA
data_new = pd.read_csv('YourNew.csv', encoding = "ISO-8859-1");
data_new = data_new.dropna()
data_text_new = data_new[['Your Target Column']]
data_text_new['index'] = data_text_new.index
documents_new = data_text_new
#documents_new = documents.dropna(subset=['Preprocessed Document'])
# process the new data set through the lemmatization, and stopwork functions
processed_docs_new = documents_new['Preprocessed Document'].map(preprocess)
# create a dictionary of individual words and filter the dictionary
dictionary_new = gensim.corpora.Dictionary(processed_docs_new[:])
dictionary_new.filter_extremes(no_below=15, no_above=0.5, keep_n=100000)
# define the bow_corpus
bow_corpus_new = [dictionary_new.doc2bow(doc) for doc in processed_docs_new]
Then you can just pass it through the trained LDA as a function. All you need is that bow_corpus:
ldamodel[bow_corpus_new[:len(bow_corpus_new)]]
If you want it out in a csv try this:
a = ldamodel[bow_corpus_new[:len(bow_corpus_new)]]
b = data_text_new
topic_0=[]
topic_1=[]
topic_2=[]
for i in a:
topic_0.append(i[0][1])
topic_1.append(i[1][1])
topic_2.append(i[2][1])
d = {'Your Target Column': b['Your Target Column'].tolist(),
'topic_0': topic_0,
'topic_1': topic_1,
'topic_2': topic_2}
df = pd.DataFrame(data=d)
df.to_csv("YourAllocated.csv", index=True, mode = 'a')
I hope this helps :)