Recently, I came across this question in an interview:
How can we determine how much storage on the stack a particular function is consuming?
The size increase of the stack, for those implementations that use a stack, is:
Most implementations push the return address on the stack before any other data. So this address takes up space.
Some processors have many registers; however, only a few may be available for passing variables. For example, if the convention allows for 2 variables but there are 5 parameters, 3 parameters will be placed on the stack.
When large objects are passed by value, they will take up space on the stack.
This is tricky to calculate, because variables may be pushed onto the stack and then popped off when not used.
Some variables may not be pushed onto the stack until they are declared. So if a function returns midway through, it may not use the remaining variables, so the stack size won't increase for those variables.
The compiler may elect to use registers to hold values or place constants directly into the executable code. In this case, they don't add any length to the stack.
The function may call other functions. Each called function may increase the amount of data on the stack. Those functions that are called may call other functions, and so on.
This again, depends on the snapshot in time of the execution. However, one can produce an approximate maximum increase of the stack by the other called functions.
As with calling other functions, a recursive call may increase the size of the stack. A recursive call at the end of the function may increase the stack more than a recursive call near the beginning.
Sometimes, the compiler may need more space for data than the allocated registers allow. Thus the compiler may push variables on the stack.
The compiler may push registers on the stack for convenience, such as swapping registers or changing the value's order.
The exact size of stack space required for a function is very difficult to calculate and may depend on where the execution is. There are many items to consider in stack size calculation, such as parameter quantity and size as well as any other functions called. Due to the variability, most stack size measurements are based on a maximum size, or worst case size. Stack allocation is usually based on the worst case scenario.
For an interview question, I would mention all of the above, which usually makes the interviewer want to move on to the next question quickly.