I am inverting a matrix via a Cholesky factorization, in a distributed environment, as it was discussed here. My code works fine, but in order to test that my distributed projec
Your differences seem to appear at about the 12th s.f. Since floating-point arithmetic is not truly associative (that is, f-p arithmetic does not guarantee that a+(b+c) == (a+b)+c
), and since parallel execution does not, generally, give a deterministic order of the application of operations, these small differences are typical of parallelised numerical codes when compared to their serial equivalents. Indeed you may observe the same order of difference when running on a different number of processors, 4 vs 8, say.
Unfortunately the easy way to get deterministic results is to stick to serial execution. To get deterministic results from parallel execution requires a major effort to be very specific about the order of execution of operations right down to the last +
or *
which almost certainly rules out the use of most numeric libraries and leads you to painstaking manual coding of large numeric routines.
In most cases that I've encountered the accuracy of the input data, often derived from sensors, does not warrant worrying about the 12th or later s.f. I don't know what your numbers represent but for many scientists and engineers equality to the 4th or 5th sf is enough equality for all practical purposes. It's a different matter for mathematicians ...