For the problem of producing a bit-pattern with exactly n
set bits, I know of two practical methods, but they both have limitations I\'m not happy with.
Fir
Seems like you want a variant of Floyd's algorithm:
Algorithm to select a single, random combination of values?
Should be especially useful in your case, because the containment test is a simple bitmask operation. This will require only k calls to the RNG. In the code below, I assume you have randint(limit)
which produces a uniform random from 0
to limit-1
, and that you want k bits set in a 32-bit int:
mask = 0;
for (j = 32 - k; j < 32; ++j) {
r = randint(j+1);
b = 1 << r;
if (mask & b) mask |= (1 << j);
else mask |= b;
}
How many bits of entropy you need here depends on how randint()
is implemented. If k > 16, set it to 32 - k and negate the result.
Your alternative suggestion of generating a single random number representing one combination among the set (mathematicians would call this a rank of the combination) is simpler if you use colex order rather than lexicographic rank. This code, for example:
for (i = k; i >= 1; --i) {
while ((b = binomial(n, i)) > r) --n;
buf[i-1] = n;
r -= b;
}
will fill the array buf[] with indices from 0 to n-1 for the k-combination at colex rank r. In your case, you'd replace buf[i-1] = n
with mask |= (1 << n)
. The binomial() function is binomial coefficient, which I do with a lookup table (see this). That would make the most efficient use of entropy, but I still think Floyd's algorithm would be a better compromise.