Equivalent for np.add.at in tensorflow

后端 未结 2 806
一整个雨季
一整个雨季 2021-01-21 07:10

How do I convert a np.add.at statement into tensorflow?

np.add.at(dW, self.x.ravel(), dout.reshape(-1, self.D))

Edit

s

2条回答
  •  说谎
    说谎 (楼主)
    2021-01-21 08:05

    Here's an example of what np.add.at does:

    In [324]: a=np.ones((10,))
    In [325]: x=np.array([1,2,3,1,4,5])
    In [326]: b=np.array([1,1,1,1,1,1])
    In [327]: np.add.at(a,x,b)
    In [328]: a
    Out[328]: array([ 1.,  3.,  2.,  2.,  2.,  2.,  1.,  1.,  1.,  1.])
    

    If instead I use +=

    In [331]: a1=np.ones((10,))
    In [332]: a1[x]+=b
    In [333]: a1
    Out[333]: array([ 1.,  2.,  2.,  2.,  2.,  2.,  1.,  1.,  1.,  1.])
    

    note that a1[1] is 2, not 3.

    If instead I use an iterative solution

    In [334]: a2=np.ones((10,))
    In [335]: for i,j in zip(x,b):
         ...:     a2[i]+=j
         ...:     
    In [336]: a2
    Out[336]: array([ 1.,  3.,  2.,  2.,  2.,  2.,  1.,  1.,  1.,  1.])
    

    it matches.

    If x does not have duplicates then += works just fine. But with the duplicates, the add.at is required to match the iterative solution.

提交回复
热议问题