numpy - ndarray - how to remove rows based on another array

前端 未结 2 2059
时光说笑
时光说笑 2021-01-21 07:03

I want to remove rows from a ndarray based on another array. for example:

k = [1,3,99]

n = [
  [1,\'a\']
  [2,\'b\']
  [3,\'c\']
  [4,\'c\']
  [.....]
  [99, \'         


        
2条回答
  •  佛祖请我去吃肉
    2021-01-21 07:50

    You can use np.in1d to create a mask of matches between the first column of n and k and then use the inverted mask to select the non-matching rows off n, like so -

    n[~np.in1d(n[:,0].astype(int), k)]
    

    If the first column is already of int dtype, skip the .astype(int) conversion step.

    Sample run -

    In [41]: n
    Out[41]: 
    array([['1', 'a'],
           ['2', 'b'],
           ['3', 'c'],
           ['4', 'c'],
           ['99', 'a'],
           ['100', 'e']], 
          dtype='|S21')
    
    In [42]: k
    Out[42]: [1, 3, 99]
    
    In [43]: n[~np.in1d(n[:,0].astype(int), k)]
    Out[43]: 
    array([['2', 'b'],
           ['4', 'c'],
           ['100', 'e']], 
          dtype='|S21')
    

    For peformance, if the first column is sorted, we can use np.searchsorted -

    mask = np.ones(n.shape[0],dtype=bool)
    mask[np.searchsorted(n[:,0], k)] = 0
    out = n[mask]
    

提交回复
热议问题