I am referring (here) to freeze models into .pb file. My model is CNN for text classification I am using (Github) link to train CNN for text classification and exporting in for
Use the below script to print the tensors... the last tensor would be the output tensor. Original author: https://blog.metaflow.fr/tensorflow-how-to-freeze-a-model-and-serve-it-with-a-python-api-d4f3596b3adc
import argparse
import tensorflow as tf
def print_tensors(pb_file):
print('Model File: {}\n'.format(pb_file))
# read pb into graph_def
with tf.gfile.GFile(pb_file, "rb") as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
# import graph_def
with tf.Graph().as_default() as graph:
tf.import_graph_def(graph_def)
# print operations
for op in graph.get_operations():
print(op.name + '\t' + str(op.values()))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--pb_file", type=str, required=True, help="Pb file")
args = parser.parse_args()
print_tensors(args.pb_file)