Stratified log-rank test in R for counting process form data?

前端 未结 1 1971
别那么骄傲
别那么骄傲 2021-01-20 20:42

Background: at half-year follow up times for 4y, patients may switch to a different medication group. To account for this, I\'ve converted survival data into counti

1条回答
  •  失恋的感觉
    2021-01-20 21:27

    So, here is an example of fitting the model and making the multiple comparisons using multcomp package. Note that this implicitly assumes that administration of treatments A-C is random. Depending on the assumptions about the process, it might be better to fit a multistate model with transitions between treatments and outcome.

    library(purrr)
    library(dplyr)
    #> 
    #> Attaching package: 'dplyr'
    #> The following objects are masked from 'package:stats':
    #> 
    #>     filter, lag
    #> The following objects are masked from 'package:base':
    #> 
    #>     intersect, setdiff, setequal, union
    library(survival)
    library(multcomp)
    #> Loading required package: mvtnorm
    #> Loading required package: TH.data
    #> Loading required package: MASS
    #> 
    #> Attaching package: 'MASS'
    #> The following object is masked from 'package:dplyr':
    #> 
    #>     select
    #> 
    #> Attaching package: 'TH.data'
    #> The following object is masked from 'package:MASS':
    #> 
    #>     geyser
    # simulate survival data
    set.seed(123)
    n <- 200
    df <- data.frame(
      id = rep(1:n, each = 8),
      start = rep(seq(0, 42, by = 6), times = 8),
      stop = rep(seq(6, 48, by = 6), times = 8),
      rx = sample(LETTERS[1:3], n * 8, replace = T))
    df$hazard <- exp(-3.5  -1 * (df$rx == "A") + .5 * (df$rx == "B") +
      .5 * (df$rx == "C"))
    
    df_surv <- data.frame(id = 1:n)
    df_surv$time <- split(df, f = df$id) %>%
      map_dbl(~msm::rpexp(n = 1, rate = .x$hazard, t = .x$start))
    
    df <- df %>% left_join(df_surv)
    #> Joining, by = "id"
    df <- df %>%
      mutate(status = 1L * (time <= stop)) %>%
      filter(start <= time)
    df %>% head()
    #>   id start stop rx     hazard     time status
    #> 1  1     0    6  A 0.01110900 13.78217      0
    #> 2  1     6   12  C 0.04978707 13.78217      0
    #> 3  1    12   18  B 0.04978707 13.78217      1
    #> 4  2     0    6  B 0.04978707 22.37251      0
    #> 5  2     6   12  B 0.04978707 22.37251      0
    #> 6  2    12   18  C 0.04978707 22.37251      0
    
    # fit the model 
    model <- coxph(Surv(start, stop, status)~rx, data = df)
    
    # define pairwise comparison
    glht_rx <- multcomp::glht(model, linfct=multcomp::mcp(rx="Tukey"))
    glht_rx
    #> 
    #>   General Linear Hypotheses
    #> 
    #> Multiple Comparisons of Means: Tukey Contrasts
    #> 
    #> 
    #> Linear Hypotheses:
    #>            Estimate
    #> B - A == 0  1.68722
    #> C - A == 0  1.60902
    #> C - B == 0 -0.07819
    
    # perform multiple comparisons 
    # (adjusts for multiple comparisons + takes into account correlation of coefficients -> more power than e.g. bonferroni)
    smry_rx <- summary(glht_rx)
    smry_rx # -> B and C different to A, but not from each other
    #> 
    #>   Simultaneous Tests for General Linear Hypotheses
    #> 
    #> Multiple Comparisons of Means: Tukey Contrasts
    #> 
    #> 
    #> Fit: coxph(formula = Surv(start, stop, status) ~ rx, data = df)
    #> 
    #> Linear Hypotheses:
    #>            Estimate Std. Error z value Pr(>|z|)    
    #> B - A == 0  1.68722    0.28315   5.959   <1e-05 ***
    #> C - A == 0  1.60902    0.28405   5.665   <1e-05 ***
    #> C - B == 0 -0.07819    0.16509  -0.474     0.88    
    #> ---
    #> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    #> (Adjusted p values reported -- single-step method)
    # confidence intervals
    plot(smry_rx)
    

    Created on 2019-04-01 by the reprex package (v0.2.1)

    0 讨论(0)
提交回复
热议问题