I am interested in updating existing layer parameters in Keras (not removing a layer and inserting a new one instead, rather just modifying existing parameters).
I w
Well, if you would like to create the architecture of a new model based on an existing model, though with some modifications, you can use to_json
and model_from_json()
functions. Here is an example:
model = Sequential()
model.add(Conv2D(10, (3,3), input_shape=(100,100,3)))
model.add(Conv2D(40, (3,3)))
model.summary()
Model summary:
Layer (type) Output Shape Param #
=================================================================
conv2d_12 (Conv2D) (None, 98, 98, 10) 280
_________________________________________________________________
conv2d_13 (Conv2D) (None, 96, 96, 40) 3640
=================================================================
Total params: 3,920
Trainable params: 3,920
Non-trainable params: 0
_________________________________________________________________
Now we modify the number of filters of the first layer and create a new model based on the modified architecture:
from keras.models import model_from_json
model.layers[0].filters *= 2
new_model = model_from_json(model.to_json())
new_model.summary()
New model summary:
Layer (type) Output Shape Param #
=================================================================
conv2d_12 (Conv2D) (None, 98, 98, 20) 560
_________________________________________________________________
conv2d_13 (Conv2D) (None, 96, 96, 40) 7240
=================================================================
Total params: 7,800
Trainable params: 7,800
Non-trainable params: 0
_________________________________________________________________
You can also modify the output of model.to_json()
directly without modifying the model instance.
You can easily use get_weights()
method to get the current weights of the convolution layer. It would return a list of two numpy arrays. The first one corresponds to filter weights and the second one corresponds to bias parameters. Then you can use set_weights()
method to set the new weights:
conv_layer = model.layers[random_conv_index]
weights = conv_layer.get_weights()
weights[0] *= factor # multiply filter weights by `factor`
conv_layer.set_weights(weights)
As a side note, the filters
attribute of a convolution layer which you have used in your code corresponds to the number of filters in this layer and not their weights.