Apply dynamical function to each point in phase space (represented by a 2D matrix)

后端 未结 2 956
佛祖请我去吃肉
佛祖请我去吃肉 2021-01-20 05:08

I have a matrix of integers, phase_space of shape (n,n), where each entry represents the number of points in that location in space. I also have tw

2条回答
  •  情歌与酒
    2021-01-20 05:23

    We can use np.bincount -

    M,N = u_x.max()+1,u_y.max()+1
    ids = u_x*N+u_y
    out = np.bincount(ids.ravel(),phase_space.ravel(),minlength=M*N).reshape(M,N)
    

    Sample run on a more generic setup -

    In [14]: u_x
    Out[14]: 
    array([[1, 2, 1],
           [0, 1, 4],
           [0, 0, 0]])
    
    In [15]: u_y
    Out[15]: 
    array([[2, 1, 2],
           [6, 0, 1],
           [2, 6, 0]])
    
    In [17]: phase_space
    Out[17]: 
    array([[1, 1, 1],
           [5, 1, 1],
           [1, 1, 1]])
    
    In [18]: out
    Out[18]: 
    array([[1., 0., 1., 0., 0., 0., 6.],
           [1., 0., 2., 0., 0., 0., 0.],
           [0., 1., 0., 0., 0., 0., 0.],
           [0., 0., 0., 0., 0., 0., 0.],
           [0., 1., 0., 0., 0., 0., 0.]])
    

    We could also make use of sparse matrices, especially if memory is a concern -

    from scipy.sparse import csr_matrix,coo_matrix
    
    out = coo_matrix( (phase_space.ravel(), (u_x.ravel(), u_y.ravel())), shape = (M,N))
    

    Output would be a sparse matrix. To convert to a dense one, use out.toarray().

提交回复
热议问题