Here are three columns:
indx vehID LocalY
1 2 35.381
2 2 39.381
3 2 43.381
4 2 47.38
5 2 51.381
6 2 55.381
7 2 59.381
8 2
You can use the convolve
function. One thing you need to decide is what to do for indices closer to either end of the array than width of the convolution kernel. One option is to simply use the partial kernel, rescaled so the weights still sum to 1.
smooth<-function(x,D,delta){
z<-exp(-abs(-D:D)/delta)
r<-convolve(x,z,type="open")/convolve(rep(1,length(x)),z,type="open")
r<-head(tail(r,-D),-D)
r
}
With your array as y
, the result is this:
> yy<-smooth(y,15,5)
> yy
[1] 50.70804 52.10837 54.04788 56.33651 58.87682 61.61121 64.50214
[8] 67.52265 70.65186 73.87197 77.16683 80.52193 83.92574 87.36969
[15] 90.84850 94.35809 98.15750 101.93317 105.67833 109.38989 113.06889
[22] 116.72139 120.35510 123.97707 127.59293 131.20786 134.82720 138.45720
[29] 142.10507 145.77820 149.48224 153.21934 156.98794 160.78322 164.60057
[36] 168.43699 172.29076 176.15989 180.04104 183.93127 187.83046 191.74004
[43] 195.66223 199.59781 203.54565 207.50342 211.46888 215.44064 219.41764
[50] 223.39908 227.05822 230.66813 234.22890 237.74176 241.20236 244.60039
[57] 247.91917 251.14346 254.25876 257.24891 260.09121 262.74910 265.16057
[64] 267.21598 268.70276
Of course, the problem with this is that the kernel ends up non-centered at the edges. This is a well-known problem, and there are ways to deal with it but it complicates the problem. Plotting the data will show you the effects of this non-centering:
plot(y)
lines(yy)